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Abstract. We report an empirical determination of the probability density functions Pdata(r) (and its
cumulative version) of the number r of earthquakes in finite space-time windows for the California catalog,
over fixed spatial boxes 5 × 5 km2, 20 × 20 km2 and 50 × 50 km2 and time intervals τ = 10, 100 and
1000 days. The data can be represented by asymptotic power law tails together with several cross-overs.
These observations are explained by a simple stochastic branching process previously studied by many
authors, the ETAS (epidemic-type aftershock sequence) model which assumes that each earthquake can
trigger other earthquakes (“aftershocks”). An aftershock sequence results in this model from the cascade
of aftershocks of each past earthquake. We develop the full theory in terms of generating functions for
describing the space-time organization of earthquake sequences and develop several approximations to
solve the equations. The calibration of the theory to the empirical observations shows that it is essential
to augment the ETAS model by taking account of the pre-existing frozen heterogeneity of spontaneous
earthquake sources. This seems natural in view of the complex multi-scale nature of fault networks, on
which earthquakes nucleate. Our extended theory is able to account for the empirical observation but some
discrepancies, especially for the shorter time windows, point to limits of both our theoretical approach and
of the ETAS model.

PACS. 64.60.Ak Renormalization-group, fractal, and percolation studies of phase transitions (see also
61.43.Hv Fractals; macroscopic aggregates) – 02.50.Ey Stochastic processes – 91.30.Dk Seismicity (see
also 91.45.gd–in geophysics appendix)

1 Introduction

Many papers purport to characterize the space-time or-
ganization of seismicity in different regions of the world.
Recent claims of universal laws for the distribution of wait-
ing times and seismic rates between earthquakes have de-
rived from the analyses of space-time windows [1,2]. The
flurry of interest from physicists comes from their fascina-
tion with the self-similar properties exhibited by seismicity
(Gutenberg-Richter power law of earthquake seismic mo-
ments, Omori decay law of aftershock rates, fractal and
multifractal space-time organization of earthquakes and
faults) together with the development of novel concepts
and techniques that may provide new insights [3–7].

The interest is no less vivid among seismologists and
geophysicists in characterizing the space-time properties
of seismicity, because it allows them to understand the
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dynamics of plate motion (at large scales), to constrain
the interaction between faults, as well as to develop bet-
ter hazard assessment. Recently, an additional incentive
is provided by the development of forecasting models
of seismicity, for instance within the RELM (Regional
Earthquake Likelihood Models: www.relm.org) project in
Southern California. In the RELM project, a forecast is
expressed as a vector of earthquake rates specified for
each multi-dimensional bin [8], where a bin is defined by
an interval of location, time, magnitude and focal mecha-
nism and the resolution of a model corresponds to the bin
sizes. Then, expectations and likelihoods can be estimated
and used for the comparison between different forecasting
methods.

A fundamental issue in testing models’ prediction is
to take into account so-called aftershock clustering. In
one way or another, many models use some form of
declustering approach to remove the effect of aftershocks
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which otherwise dominate and obscure the desired infor-
mation about the model’s performance [8]. Then, with
such declustered catalogs, the likelihood of forecasts are
estimated using Poissonian probabilities. But, if the cata-
log is only partially declustered (which it will most prob-
ably be as there are no agreed upon fully efficient method
of declustering), then our contribution in this paper is
to show that the distribution of event numbers should
present a tail much more heavy than predicted by the
Poissonian statistics and to propose a theoretical expla-
nation for it. Pisarenko and Golubeva [11] introduced a
model to decluster catalogs by so-to-say Poisson “with
random parameter,” which resulted in a law with slowly
decreasing probabilities (actually a stable Lévy law) for
the distribution of rates. We note however that several
short term forecasts have been developed recently to fore-
cast seismicity rate, which do not remove aftershocks from
the catalog in order to compare the model with the data
and estimate the model performance [9,10]. Our criticism
does not apply to them.

We improve on preceding results on several points. Our
first contribution is to show that the heavy tail nature
of the distribution of seismic rate is intrinsic to a class
of generic models of triggered seismicity. Specifically, our
theory is based on a simple model of earthquake trigger-
ing, in which future seismicity is a conditional Poisson
process, with average rates (or Poisson intensity) condi-
tioned on past seismicity. We show that the exponential
Poisson rate is renormalized into a power law tail by the
mechanism involving a cascade of earthquake triggering.
Our theory thus provides a prediction for the distribu-
tion of seismic rates in space-time bins in the form of a
power law tail distribution. Our second contribution is to
show that our prediction is verified by empirical seismic
rates in Southern California over more than two decades.
In addition, our theory accounts well for the evolution of
the distribution of seismic rates as a function of the time
window size from 1 day to 1000 days.

This implies that spontaneous fluctuations of the num-
ber of triggered earthquakes in space-time bins may be
simply due to the cascades of triggering processes, which
lead to dramatic departures from the Poisson model used
as one of the building block of standard testing procedures.
Accounting for the intrinsic heavy tail nature of the dis-
tribution of seismic rate may explain, we believe, many
of the contradictions and rejections of models assessed on
the basis of Poisson statistics of so-called declustered cat-
alogs. This also suggests the need for fundamentally dif-
ferent earthquake prediction models and testing methods.
Our results also offer a simple alternative explanation to
so-called universal laws [1,2] in terms of cascades of trig-
gered earthquakes: our proposed framework explains the
observed power law distributions of seismic rates from the
fundamentals of seismicity characterized by a few expo-
nents.

The organization of the paper is the following. Sec-
tion 2 presents the epidemic-type aftershock sequence
(ETAS) branching model. Section 3 applies the formalism
of generating probability functions (GPF) to the problem

of calculating the distribution of seismic rates in finite
space-time windows. Appendix A offers a general tutorial
of the GPF formalism. Section 4 calculates the averages
and the distributions of aftershock numbers in finite space-
time windows within the ETAS model. Section 5 presents
the large time window approximation to obtain explicit so-
lutions of the implicit GPF equations. Section 6 describes
the empirical analysis of the seismic rates in Southern
California and compares with the theoretical predictions.
Section 7 presents additional statistical tests of the the-
ory using statistics conditioned on generation numbers.
Section 8 concludes. A list of symbols is offered and two
additional Appendices B and C clarify some technicalities
associated with derivations in the body of the text.

2 The Epidemic-Type Aftershock Sequence
(ETAS) branching model of earthquakes
with long memory

We study the general branching process, called the
Epidemic-Type Aftershock Sequence (ETAS) model of
triggered seismicity, introduced by Ogata in the present
form [12] and by Kagan and Knopoff in a slightly differ-
ent form [13] and whose main statistical properties are
reviewed in [14]. For completeness and in order to fix no-
tations, we recall its definition and ingredients used in our
analysis that follows. In this model, all earthquakes are
treated on the same footing and there is no distinction be-
tween foreshocks, mainshocks and aftershocks, other than
from retrospective human-made classification. The advan-
tage of the ETAS model is its conceptual simplicity based
on three independent well-found empirical laws and its
power of explanation of other empirical observations (see
for instance [15] and references therein).

The ETAS model belongs to a general class of branch-
ing processes [18,19], and has in addition the property
that the variance of the number of earthquake progenies
triggered in direct lineage from a given mother earth-
quake is mathematically infinite. Moreover, a long-time
(power law) memory of the impact of a mother on her
first-generation daughters describes the empirical Omori
law for aftershocks. These two ingredients together with
the mechanism of cascades of branching have been shown
to give rise to subdiffusion [21,22] and to non mean-field
behavior in the distribution of the total number of af-
tershocks per mainshock, in the distribution of the total
number of generations before extinctions [23] and in the
distribution of the total duration of an aftershock sequence
before extinction [24].

In the ETAS model, each earthquake is a potential pro-
genitor or mother, characterized by its conditional average
number

Nm ≡ κµ(m) (1)
of children (triggered events or aftershocks of first gener-
ation), where

µ(m) = 10α(m−m0) , (2)
is a mark associated with an earthquake of magnitude
m � m0 (in the language of “marked point processes”),
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κ is a constant factor and m0 is the minimum magnitude
of earthquakes capable of triggering other earthquakes.
The meaning of the term “conditional average” for Nm

is the following: for a given earthquake of magnitude m
and therefore of mark µ(m), the number r of its daughters
of first generation are drawn at random according to the
Poissonian statistics

pµ(r) =
N r

m

r!
e−Nm =

(κµ)r

r!
e−κµ . (3)

Nm is the expectation of the number of daughters of first
generation, conditioned on a fixed magnitude m and mark
µ(m). The expression (2) for µ(m) is chosen in such a way
that it reproduces the empirical dependence of the average
number of aftershocks triggered directly by an earthquake
of magnitude m (see [25] and references therein). Expres-
sion (1) with (2) gives the so-called productivity law of
a given mother as a function of its magnitude. The chal-
lenge of our present analysis is to understand how the
exponential distribution (3) is changed by taking into ac-
count all earthquake triggering paths simultaneously and
at all possible generations.

The ETAS model is complemented by the Gutenberg-
Richter (GR) density distribution of earthquake magni-
tudes

p(m) = b ln(10) 10−b(m−m0) , m � m0 , (4)

such that
∫ ∞

m p(x)dx gives the probability that an earth-
quake has a magnitude equal to or larger than m. This
magnitude distribution p(m) is assumed to be indepen-
dent of the magnitude of the triggering earthquake, i.e., a
large earthquake can be triggered by a smaller one [15,25].

Combining equations (4) and (2) shows that the earth-
quake marks µ and therefore the conditional average num-
ber Nm of daughters of first generation are distributed
according to the normalized power law

pµ(µ) =
γ

µ1+γ
, 1 ≤ µ < +∞, γ = b/α . (5)

For earthquakes, b ≈ 1 and 0.5 < α < 1 giving 1 < γ < 2
(see [26] for a review of values quoted in the literature
and their implications). This range 1 < γ < 2 implies
that the mathematical expectation of µ and therefore of
Nm (performed over all possible magnitudes) is finite but
its variance is infinite (the marginal case α = 1 leading
to γ = 1 requires the existence of an upper magnitude
cut-off [26]).

For a fixed γ, the coefficient κ then controls the value
of the average number n (or branching ratio) of children
of first generation per mother:

n = 〈Nm〉 = κ〈µ〉 = κ
γ

γ − 1
, (6)

where the average 〈Nm〉 is taken over all mothers’ mag-
nitudes drawn from the GR law. Recall that the values
n < 1, n = 1 and n > 1 correspond respectively to the
sub-critical, critical and super-critical regimes.

The next ingredient of the ETAS model consists in
the specification of the space-time rate function NmΦ(r−
ri, t−ti) giving the average rate of first generation daugh-
ters at time t and position r created by a mother of mag-
nitude m � m0 occurring at time ti and position ri:

Φ(x, t) = Φ(t)φ(x) . (7)

The time propagator Φ(t) has the Omori law form

Φ(t) =
θcθ

(c+ t)1+θ
H(t) (8)

where H(t) is the Heaviside function, 0 < θ < 1, c is
a regularizing time scale that ensures that the seismicity
rate remains finite close to the mainshock. The time decay
rate (8) is called the “direct Omori law” [14,27]. Due to
the process of cascades of triggering by which a mother
triggers daughters which then trigger their own daughters
and so on, the direct Omori law (8) is renormalized into
a “dressed” or “renormalized” Omori law [14,27], which
is the one observed empirically. The analysis below will
retrieve and extend this result.

The space propagator is given by

φ(x) =
η dη

2π(x2 + d2)(η+2)/2
. (9)

For our comparison with the empirical data, we shall con-
sider the epicenter position of earthquakes, that is, the 2D-
projection on the earth surface of the real 3D-distribution
of earthquake hypocenters. Numerical implementations of
the theory developed below will thus be done in 2D but
it is easy to generalize to 3D if/when the empirical data
will be of sufficient quality to warrant it. For the calcu-
lations performed below, we assume that φ(x) is decou-
pled from the distribution of magnitudes, which is not
entirely correct since, in reality, d is proportional to the
mainshock rupture length L ∼ 10m/2. As a consequence,
the density of aftershocks over a fault area of size less
than d does not depend on m in real data. Our theory de-
veloped below provides a way to approximately account
for this fact. Technically, this decoupling is convenient for
the calculations but disappears eventually when we intro-
duce the effective parameter p defined in equations (64),
(65), which is the cost to pay for providing an approxi-
mate analytical solution (through the large time-window
approximation developed in Sect. 5 and the factorization
procedure of Sect. 5.1). Our final formulas (113), (115) are
expressed in term of this semi-phenomenological parame-
ter p (and not in terms of Eq. (9) nor of the parameter
d), which we have used to fit real data and theoreti-
cal curves. In a nutshell, this parameter is the fraction
(among all aftershocks) of aftershocks, triggered by some
inner source and occurring inside the window. Thus, the
parameter p takes into account the spatial aftershocks
distribution around of mainshock. Its adjustment in our
comparison with the data gives eventually (see Sect. 6.2)
p = 0.45; 0.85; 0.92 for L = 5; 20; 50 km, respectively.
These values take into account in an effective way the
mentioned law d ∼ L ∼ 10m/2.
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In the following, we will make use of the Laplace trans-
form of the Omori law

Φ̂(u) =
∫ ∞

0

Φ(t) e−ut dt = θ (cu)θ ecu Γ (−θ, cu) (10)

and of its asymptotic behavior

Φ̂−1(u) ∼ 1 + Γ (1 − θ)(cu)θ , cu� 1 . (11)

The Fourier transform of the space propagator (9) will
also be useful:

φ̃(q) =

∞∫∫

−∞
φ(x)ei(q·x) dx = 2

(
dq

2

)η/2 Kη/2(dq)
Γ (η/2)

. (12)

In particular

φ̃(q) = e−dq (η = 1) , φ̃(q) = e−dq(1+dq) (η = 3) .
(13)

The last ingredient of the ETAS model is to assume
that plate tectonic motion induces spontaneous mother
earthquakes, which are not triggered by previous earth-
quakes, according to a Poissonian point process, such that
the average number of spontaneous mother earthquakes
per unit time and per unit surface is 
. In the ETAS
branching model, each such spontaneous mother earth-
quake then triggers independently its own space-time af-
tershocks branching process.

It is a well-established facts that, at large scale, earth-
quakes are preferentially clustered near the plate bound-
aries while, at smaller scales, earthquakes are found mostly
along faults and close to nodes between several faults [28].
It is natural to extend the ETAS model to allow for the
heterogeneity of the spontaneous earthquake sources 
 re-
flecting the influence of pre-existing fault structures, some
rheological heterogeneity and complex spatial stress dis-
tributions. We get some guidelines from the distribution of
the stress field in heterogeneous media and due to earth-
quakes [29] which should be close to a Cauchy distribution
( 1

x2+π2 ) or probably more generally to a power law [30,31]
(see also Chap. 17 of [32]).

The simplest prescription is thus to assume that 
 is
itself random and distributed according to

1
〈
〉 f

(



〈
〉
)

, (14)

where 〈
〉 is the statistical average of the random space-
time Poissonian source intensity 
. In the numerical ap-
plications below, we shall use the form

fδ(x) =
δ + 1
δ

(
1 +

x

δ

)−2−δ

(δ > 0). (15)

Note that the distribution of spontaneous source f(ρ) is
not exactly the same as a spatial distribution of back-
ground seismicity. The former is a probability density
function (PDF) and the later is a field. A field is described
by its PDF (corresponding to a the one-point statistics)

and its higher-order moments which capture the spatial
dependence structure. By using f(ρ), we account for the
one-point statistics but not for the higher-order moments
of the spatial structure. In other words, we sample over
statistics to account for the sample over different boxes
with different source efficiencies. Using f(ρ) is a simple
way to take into account the fractal space structure of
event sources, when one is interested in the statistics of
event numbers. If we wanted to calculate the spatial corre-
lation properties of seismicity rates, using f(ρ) would be
insufficient. But for a one-point statistics of event num-
bers in finite space-time windows, a one-point statistics of
spontaneous sources seems sufficient.

The value δ = 0 gives the same tail as the Cauchy
distribution advocated in [29] for the stress field. We have
considered other functions, such as half-Gaussian, expo-
nential, half-Cauchy but none of them give satisfactory
fits to the data (see below). The parametrization (15) with
δ > 0 allows us to have only a single scale 〈
〉 controlling
the typical fluctuation of the random sources. We have
found that only slightly positive values of δ (correspond-
ing to tails a little faster than the Cauchy law) gives rea-
sonable fits to the data (see below). It is interesting to
observe that the data on the distribution of seismic rates
thus seems to constrain significantly the fractal distribu-
tion of seismic sources.

3 Generating Probability Function (GPF)
of earthquakes branching process

In this section, we describe the statistical properties of
earthquake branching processes using the technology of
generating functions. For the theory of GPF, we refer to
[16–19]. These books are devoted mostly to the analysis of
the statistics of the number of events per generation, and
explore the asymptotics of these kinds of statistics for the
Markovian case. Our contribution is to extend this theory
to the more complex situation of continuous space-time
propagators and power law distributions of marks. Ap-
pendix A recalls the definition of the GPF of arbitrary
non-negative random integer R and illustrate possible ap-
plications of the GPF formalism to explore the statistical
properties of branching processes.

First, let us recall the GPF of the total number R1

of the first-generation aftershocks of a mother event of
magnitude m can be easily obtained as (see App. A)

eµκ(z−1) , (16)

using the fact that the rate of first-generation aftershocks
is Poissonian according to equation (3). In this expression
(16), κ and µ are given by their definition in equations (1)
and (2).

Averaging equation (16) over the random parameter
µ gives the GPF of the number R1 of first generation
aftershocks triggered by a mother aftershock of arbitrary
magnitude

G(z) = γκγ(1 − z)γ Γ (−γ, κ(1 − z)) . (17)
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Fig. 1. Plot of the probabilities (19) and their power law
asymptotics (20) for the infinite variance case γ = 1.25 and
for a finite variance case γ = 3.

Note that 〈R1〉 is nothing but the branching ratio n de-
fined above in equation (6). Knowing the expression (17)
for the GPF G(z), one finds the corresponding probabili-
ties of the random numbers R1 by using expression (145)
of Appendix A together with the property of incomplete
Gamma function (formula (11) of Chap. 9, Sect. 2 of the
book [20])

dn

dxn

[
x−αΓ (α, x)

]
= (−1)nx−α−nΓ (α+ n, x) . (18)

In our case α = −γ, n = r, x = κ(1− z) and we calculate
the r-th derivation at z = 0 (x = κ) to obtain

P1(r) = Pr {R1 = r} = γ
kγ

r!
Γ (r − γ, κ) , (19)

which have the following asymptotics

P1(r) 	 γκγ

rγ+1
= nγ γ1−γ (γ − 1)γ r−γ−1 (r 
 1) .

(20)
Expression (20) implies that, for 1 < γ < 2, the variance of
the random number R1 is infinite. For γ > 2, the variance
is finite and is equal to

σ2
1 =

n2

γ(γ − 2)
+ n . (21)

Figure 1 shows the probabilities (19) and their power law
asymptotics for n = 1, γ = 1.25 and γ = 3.

Let us now consider the set of independent
space-time aftershock branching processes, triggered by
spontaneously arising mother earthquakes. Due to the
independence between each sequence triggered by each
spontaneous event, it is easy to show that the GPF of
the number of events (including mother earthquakes and
all their aftershocks of all generations), falling into the
space-time window {[t, t+ τ ] × S} is equal to

Θsp(z, τ,S) = e−� L(z,τ,S) (22)

Fig. 2. Illustration of the three different sets of space-time lo-
cations for mother earthquakes contributing to the three terms
in the r.h.s. of expression (23).

where

L(z, τ,S) =
∫ ∞

0

dt

∞∫∫

−∞
dx [1 −Θ(z, t, τ,S; x)]

+
∫ τ

0

dt

∞∫∫

−∞
dx [1 −Θ(z, t,S; x)] [1 − IS(x)]

+
∫ τ

0

dt

∫∫

S
dx [1 − zΘ(z, t,S; x)] .

(23)

The three above summands have the following transpar-
ent geometrical meaning.

• The first summand describes the contribution to the
GPF Θsp from aftershocks triggered by mother earth-
quakes that occurred before the time window (i.e. at
instants t′ such that t′ < t) (positions 1 in Fig. 2). The
corresponding GPF Θ(z, t − t′, τ,S; x) of the number
of aftershocks triggered inside the space-time window
{[t, t+ τ ]×S} by some mother event that occurred at
time t′ satisfies the relation

Θ(z, t, τ,S; x) = G[1 − Ψ(z, t, τ,S; x)] , (24)

where the auxiliary function Ψ(z, t, τ,S; x), describing
the space-time dissemination of aftershocks triggering
by some mother event, is equal to

Ψ(z, t, τ,S; x) =
Φ(x, t) ⊗ [1 −Θ(z, t, τ,S; x)]
+ Φ(x, t+ τ) ⊗ [1 −Θ(z, τ,S; x)]
+ (1 − z)Φ(x, t+ τ) ⊗ IS(x)Θ(z, τ,S; x). (25)

The symbol ⊗ represents the convolution operator.
Φ(x − x′, t′), which has been defined in equation (7),
is the probability density function (PDF) of the posi-
tion x′ and instant t′ of some first generation after-
shock, triggered by the mother event, arising at the
instant t = 0 and at the point x. The function IS(x)
in equations (23) and (25) is the indicator of the space
window S and G(z) in equation (24) is the GPF of the
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number R1 of first generation aftershocks, triggered by
some mother earthquake. G(z) given in equation (17)
is common to all mother earthquakes and to all after-
shocks.

• The last two terms in expression (23) (positions 2 and
3 in Fig. 2) describe the contribution of aftershocks
triggered by earthquakes, occurring inside the time
window (i.e., t′ ∈ [t, t + τ ]). The second term (posi-
tion 2 in Fig. 2) corresponds to the subset spatially
outside the domain S. The third term (position 3 in
Fig. 2) corresponds to the subset spatially inside the
domain S. These last two terms in expression (23) de-
pend on the GPF

Θ(z, τ,S; x) = Θ(z, t = 0, τ,S; x) (26)

of the numbers of aftershocks triggered till time τ in-
side the space window S by some mother event arising
at the instant t = 0 and at the point x. It follows from
equations (24) and (25) that it satisfies the relations

Θ(z, τ,S; x) = G[1 − Ψ(z, τ,S; x)] (27)

and

Ψ(z, τ,S; x) = Φ(x, τ) ⊗ [1 −Θ(z, τ,S; x)]
+ (1 − z)Φ(x, τ) ⊗ IS(x)Θ(z, τ,S; x) . (28)

In addition, we shall need the GPF

Θ(z,S; x) = Θ(z, τ = ∞,S; x) (29)

of the total numbers of aftershocks triggered by some
mother earthquake inside the area S. As seen from equa-
tions (27) and (28), it satisfies the relations

Θ(z,S; x) = G[1 − Ψ(z,S; x)] (30)

and

Ψ(z,S; x) =
1 − φ(x) ⊗Θ(z,S; x) + (1 − z)φ(x) ⊗ IS(x)Θ(z,S; x) .

(31)

Taking into account the distribution of the source intensi-
ties 
 amounts to averaging equation (22) over 
 weighted
with the statistics (14). This gives

Θsp(z, τ ;S) = f̂ [〈
〉L(z, τ,S)] , (32)

where f̂(u) is the Laplace transform of the PDF f(x). For
the specification (15), expression (32) becomes

f̂δ(u) = (1 + δ)(δu)1+δ eδu Γ (−1 − δ, δu) . (33)

4 Averages and rates of aftershocks within
the space-time window {[t, t + τ ] × S}
Before discussing the properties of the distributions of af-
tershocks, we consider their simplest statistical character-
istics, namely the averages and rates of different kinds

of aftershocks. This introduces the relevant characteris-
tic scales in the time and in the space domains, which
are found inherent to the space-time branching processes.
This also suggests the natural “large time window approx-
imation” used and tested below within the more general
probabilistic treatment.

4.1 Average of the total number of events
in the space-time window {[t, t + τ ] × S}

Let us first calculate the average of the total number of
events inside the space-time window given by

〈Rsp(τ,S)〉 =
∂Θsp(z, τ,S)

∂z

∣
∣
∣
∣
z=1

. (34)

It follows from equations (32) and (23) that it is equal to

〈Rsp(τ,S)〉 = 〈Rout(τ,S)〉 + 〈R(τ,S)〉 + 〈
〉Sτ , (35)

where 〈Rout(τ,S)〉 is the average number of aftershocks
triggered by spontaneous “mother” earthquake sources
that occurred before time t (positions 1 in Fig. 2),
〈R(τ,S)〉 is the average of number of aftershocks trigger-
ing by spontaneous earthquake sources that occur within
the time interval [t, t + τ ] (positions 2 and 3 in Fig. 2)
and 〈
〉Sτ is the average of number of spontaneous earth-
quakes inside the space-time window. Here and every-
where in the following, S is the area of the spatial domain
S and thus Sτ is the space-time volume associated with
the space-time window.

In what follows, it will be useful to introduce the rate
of events

Nsp(τ,S) =
d〈Rsp(τ,S)〉

dτ
, (36)

with

Nsp(τ,S) = Nout(τ,S) +N(τ,S) + 〈
〉S . (37)

Using equations (24), (25) and equations (27), (28), Ap-
pendix B shows that

N(τ,S) =
n

1 − n
〈
〉S −Nout(τ,S) (38)

where Nout(τ,S) satisfies the equation

Nout(τ,S) − nNout(τ,S) ⊗ Φ(τ) =
n 〈
〉S
1 − n

a(τ) , (39)

and n is the branching ratio defined in equation (6). Here
and below, the following notation is used

a(τ) =
∫ ∞

τ

Φ(t) dt =
(

c

τ + c

)θ

. (40)

Substituting equations (38) into (37) gives the obvious
equality

Nsp(τ,S) =
〈
〉S
1 − n

, (41)
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which implies that, due to the cascade of earthquake
triggering processes, the average of the total number
〈Rsp(τ,S)〉 of events is amplified by the factor 1/(1 − n)
compared with the average number 〈
〉τS of earthquake
sources. This factor 1/(1−n) has a simple intuitive mean-
ing [33]: one event gives on average n daughters in di-
rect lineage; each of these first-generation daughters give n
grand-daughters, the average number of grand-daughters
is thus n2, and the reasoning continues over all genera-
tions. Summing over all generations, the total number of
events triggered by a given source plus the source itself
is 1 + n + n2 + n3 + ..., which sums to 1/(1 − n). It is
clear from this reasoning that formula (41) only holds for
n < 1. Otherwise, the regime n > 1 corresponds to the
super-critical case for which there is a non-zero probabil-
ity P (r = ∞) > 0 that number of aftershocks is infinite.

4.2 Impact of mother earthquake sources occurring
before the time window

Here, we use previous and other related relations in the
goal of estimating the contribution of the different terms
in the r.h.s. of equation (23) to the GPF Θsp(z, τ,S). Our
goal is to prepare and check for approximations that will
be used below.

For instance, we shall assume that the contribution of
the first term in equation (23), which is responsible for af-
tershocks triggered by earthquakes occurring before time
t (i.e., outside the time window [t, t + τ ]), is negligible if
the corresponding relative events rate obeys the following
condition

Nout(τ) =
Nout(τ,S)
Nsp(τ,S)

� 1 . (42)

To check when this condition holds, notice that, due to
equations (39), (41), Nout(τ) is solution of

Nout(τ) − nNout(τ) ⊗ Φ(τ) = na(τ) . (43)

Applying the Laplace transform to both sides of this equa-
tion gives

N̂out(u) = n
1 − Φ̂(u)

u[1 − nΦ̂(u)]
. (44)

Using the asymptotic formula (11), we obtain

N̂out(u) 	 n (c1u)θ−1

1 + (c1u)θ
, (45)

where

c1 =
(
Γ (1 − θ)

1 − n

)1/θ

c (46)

is a characteristic time-scale of aftershock branching pro-
cesses separating a 1/t1−θ law at t < c1 from a 1/t1+θ law
at t > c1 for the decay with time of the average aftershock
rate triggered by a single mother earthquake [27,14]. The
estimation (46), and the more accurate estimation (130)
related to it which is developed below, are highly sensitive
to the values of θ and n, especially when the former (resp.

Fig. 3. Plots of the exact rate Nout(τ ), its fractional approxi-
mation (47) (which actually coincides with the exact value) and
its asymptotic approximation (51) obtained from (49) (dashed
line), for n = 0.9 and θ = 1/2.

later) approaches 0 (resp. 1). As a result, changing θ and
n “insignificantly” may lead to very different values c1.
For instance, for c = 10 s, n = 0.9 (resp. n = 0.96), and
θ = 0.2, then c1 	 20 days (resp. c1 	 7 years). But, for
θ = 0.1 [44], we obtain c1 	 6000 years (resp. c1 	 56 mil-
lion years) for n = 0.9 (resp. for n = 0.96). For θ ≥ 0.2
and n ≤ 0.9, c1 is of the order of days or less and the large
window approximation used below holds.

Taking the inverse Laplace transform of equation (45)
gives

Nout(τ) = nEθ

[

−
(
τ

c1

)θ
]

(47)

where Eθ(x) is the Mittag-Leffler function defined by

Eθ(−x) =
x

π
sinπθ

∫ ∞

0

yθ−1e−y dy

y2θ + x2 + 2xyθ cosπθ
(x > 0, 0 < θ < 1) . (48)

The following asymptotic property holds:

Eθ(−x) ∼ 1
x Γ (1 − θ)

(x→ ∞). (49)

In addition,
E1/2(−x) = ex2

erfcx . (50)

Figure 3 plots the exact rate Nout(τ), its fractional ap-
proximation (47) and corresponding asymptotics derived
from equation (49):

Nout(τ) 	 n

Γ (1 − θ)

(c1
τ

)θ

, (51)

for n = 0.9 and θ = 1/2. One can observe that the asymp-
totic result (51) is rather precise even if τ is close to c1.
Equation (51) means that, if

τ 
 c1 , (52)

then one can neglect the contribution of aftershocks trig-
gered by the spontaneous earthquake sources occurring
before the time window [t, t+ τ ]. The remark will be used
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in our following investigation and the condition (52) will
be refered to as the “large-time window approximation.”
As discussed before, this approximation will hold typically
for θ ≥ 0.2 and n ≤ 0.9, for which c1 is of the order of
days or less. Note that the errors on the knowledge of the
parameters θ and n, while difficult to quantify accurately,
are probably of the order of 0.1 or more, in absolute value.
This is the range over which c1 changes from smaller than
a day to astronomical. It thus seems premature to con-
clude on the precise value of c1. Other information is nec-
essary to constrain c1. In this vein, let us mention that we
have also compared our theory with real data, not only
for 10–1000 days presented here, but for 1 day and even
0.1 day. The discrepancy between theory and real data
(not shown) for the smaller time windows might serve as
some indirect argument that θ < 0.3 while θ > 0.1. More-
over, the reasonable agreement of the predictions of our
analysis obtained with the help of the large window ap-
proximation with our data analysis for time windows of
10 days and larger suggests that c1 is in the range of a few
days.

4.3 Impact of mother earthquake sources occurring
inside the space-time window {[t, t + τ ] × S}
Let us calculate the contribution to the rate (37) of events
corresponding to the last term of equation (23) (position 3
in Fig. 2). This term describes all the aftershocks triggered
by mother earthquakes occurring within the space-time
window {[t, t + τ ] × S}. It is easy to show that the cor-
responding seismic rate, which can be compared with the
contribution (41), is equal to

Nin(τ ;S) = 1 − n+
1 − n

S

∫∫

S
〈R(τ,S; x)〉dx , (53)

where

〈R(τ,S; x)〉 =
∂Θ(z, τ,S)

∂z

∣
∣
∣
∣
z=1

(54)

is the average number of aftershocks triggered within the
space window S till instant τ by some mother earthquake
occurring at position x and at the time t = 0. Using rela-
tions (27)–(31), one can show that

〈R(τ,S; x)〉 = 〈R(S; x)〉 − 〈R+(τ,S; x)〉 , (55)

where 〈R(S; x)〉 is the total number of aftershocks falling
inside the space domain S which are triggered by a earth-
quake source occurring at position x and at the time t = 0.
〈R+(τ,S; x)〉 is the corresponding number of aftershocks
falling with the space domain S after the instant τ .

It is easy to show that the Laplace (with respect
to τ) and the Fourier (with respect to x) transform of
〈R+(τ,S; x)〉 is equal to

ˆ〈R〉+(u,S; q) = n φ̃S(q)
1
u

(
1

1 − nφ̃(q)
− Φ̃(u)

1 − nφ̃(q)Φ̃(u)

)

.

(56)

Fig. 4. Plots of 〈R(τ,S ;x)〉 for η = 1, � = 10 d, θ = 1/2 and
for τ = c1; 5 c1; 20 c1. The dashed line is the plot of the average
of the total number of aftershocks, falling into the circle S .

Fig. 5. Plots of the relative rate Nin(S) given by (59) as a
function of the dimensionless size �/d of the space domain, for
different exponents η = 1; 2; 3 of the space propagator.

Appendix C shows how to go from equation (56) to

〈R̃〉(τ,S; q) 	 〈R̃〉(S; q)

[

1−Eθ

(

−1 − nφ̃(q)
1 − n

(
τ

c1

)θ
)]

.

(57)
Using expression (57), we construct Figure 4 which plots
〈R(τ,S; x)〉 for different values of τ/c1, in order to illus-
trate its convergence to the average 〈R(S; x)〉 of the total
number of aftershocks falling inside the area S.

As can be seen from Figures 3 and 4, it follows
from equation (57) and from the properties of Mittag-
Leffler functions that, if the large time window approxi-
mation (52) holds, one may use the approximate equality

〈R(τ,S; x)〉 	 〈R(S; x)〉. (58)

In this large time window approximation, the relative rate
(53) is transformed into

Nin(S) 	 1− n+
n(1 − n)
2π2�2

∫ ∞

0

φ̃(q)
1 − nφ(q)

Ĩ2
S(q) dq . (59)

As the space domain S increases in size, Nin(S) increases
towards 1. Figure 5 plots Nin(S) using the space propaga-
tor φ(x) given by equation (9) for different values of the
exponent η.
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5 Large time window approximation

The analysis of the previous section gives us the possi-
bility to explore the probabilistic properties of the num-
ber of events in given space-time windows, in the regime
where the large time window approximation (52) holds.
If the time duration τ of the space-time window is suf-
ficiently large, the previous section has shown that the
statistical averages and the seismic rates become indepen-
dent of τ . It seems reasonable to conjecture that the GPF
Θ(z, τ,S; x) of the total number of aftershocks triggered
by some earthquake source inside the space domain S until
time τ coincides approximately with the saturated GPF
Θ(z,S; x) of the total number of aftershocks triggered by
some earthquake source inside the space domain S. Within
this approximation of large time windows, the effect of af-
tershocks triggered by earthquake sources occurring till
the beginning t of the time window is negligible. Section 7
below will explore in more details the applicability of this
conjecture.

Within this large time window approximation, one
may ignore the first term in the r.h.s. of equation (23) and
replace Θ(z, t,S; x) by Θ(z,S; x) in the remaining terms.
As a result, equation (23) takes the following approximate
form

L(z, τ,S) 	

τ

∞∫∫

−∞
[1−Θ(z,S; x)][1−IS(x)]dx+τ

∫∫

S
[1−zΘ(z,S; x)]dx ,

(60)

where Θ(z,S; x) is the solution of equations (30) with (31)
or, equivalently, is the solution of

Θ = G [Θ ⊗ φ− (1 − z)ISΘ ⊗ φ] , (61)

where the function G is defined in equation (17).

5.1 Factorization procedure

To find a reasonable approximate expression for the
sought GPF Θ(z,S; x), notice that if � 
 d (or if n is
close to 1) then the characteristic spatial scale associated
with the GPF Θ(z,S; x) becomes greater than d. There-
fore, without essential error, one may replace Θ ⊗ φ by
Θ in equation (61). In addition, we take into account the
finiteness of the domain S by using the factorization pro-
cedure of replacing the last term of the argument of the
function G in equation (61) as follows:

IS(x)Θ(z,S; x) ⊗ φ(x) 	 Θ(z,S; x) pS(x) , (62)

where pS(x) remains to be specified. We will show below
that pS(x) may be interpreted as the overall fraction of
aftershocks, triggered by a mother earthquake at position
x, which fall within the domain S. The factorization pro-
cedure amounts to replacing a convolution integral by an

Fig. 6. Plots of the self-consistent factor pS(x) defined by (65)
for � = 10 d and for n = 0.5; 0.8; 0.9.

algebraic term. This factorization approximation is a cru-
cial step of our analysis and will be justified further below.
As a result of its use, the nonlinear integral equation (61)
transforms into the functional equation

Θ = G[(1 + (z − 1)pS(x))Θ] . (63)

It is easy to show that, if relation (63) holds, then the
average of the number of aftershocks corresponding to it
is equal to

〈R〉 =
n

1 − n
pS . (64)

In the next subsection, we shall clarify what is the proba-
bilistic sense of the parameter pS . Here, it is sufficient to
remark that one can determine it from a consistency con-
dition: choose pS(x) such that the r.h.s. of equation (64)
is equal to the true 〈R(S; x)〉. This gives

pS(x) =
1 − n

n
〈R(S; x)〉, p̃S(q) = ĨS(q)φ̃(q)

1 − n

1 − nφ̃(q)
.

(65)
Figure 6 plots pS(x) defined by expression (65) as a func-
tion of dimensionless distance x/�.

One can observe that, for � 
 d, the factor pS(x)
approaches a rectangular function. We can use this obser-
vation to help determine the statistics of the number of
events in a finite space-time window, using the approx-
imation pS(x) 	 const. = p for x ∈ S. We define the
parameter p as the space average of pS(x) over the win-
dow’s area S:

p 	 1
S

∫∫

S
pS(x)dx, (66)

p is thus the average over all possible spatial positions of
mother earthquakes of the fraction of aftershocks which
fall within the space-time window S. The approximation
pS(x) 	 const = p for x ∈ S allows us to simplify the last
term of equation (60) as follows:

τ

∫∫

S
[1 − zΘ(z,S; x)]dx 	 τS[1 − zΘ(z; p)] , (67)

where Θ(z, p) is the solution of

Θ(z; p) = G[(1 + (z − 1)p)Θ(z; p)] , (68)
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which is derived from equation (63).
Complementarily, as can be seen from Figure 6, pS(x)

is small outside the window space domain S. It implies
that, outside S, one may replace equation (63) by its lin-
earized version. As a result, we get

1 −Θ(z,S; x) 	 n

1 − n
(1 − z)pS(x) . (69)

Therefore, the first term in the r.h.s. of equation (60)
transforms into

τ

∞∫∫

−∞
[1 −Θ(z,S; x)][1 − IS(x)]dx 	 qτS

n

1 − n
(1 − z) ,

(70)
where

q =
1
S

∞∫∫

−∞
pS(x)[1 − IS(x)]dx . (71)

Taking into account that, due to equation (65),

∞∫∫

−∞
pS(x)dx = S , (72)

we obtain
q 	 1 − p . (73)

Putting all these approximations together allows us to
rewrite equation (60) in the form

L(z, τ,S) 	 τS

[
n

1 − n
(1 − p)(1 − z) + 1 − zΘ(z; p)

]

.

(74)
In what follows, we shall select a value of the parameter
p which takes into account the finiteness of the window’s
spatial domain S, to better fit empirical data on the statis-
tics of seismic rates in finite space-time bins.

5.2 Probabilistic meaning of the factorization
approximation (62) leading to (63) and (65)

The factorization approximation (62) has the following
implication. Calling Θ(z) the GPF of the total number of
aftershocks triggered over the whole space by some earth-
quake source, one can then determine the corresponding
GPF Θ(z,S; x), taking into account approximately the
finiteness of the space domain S and satisfying the func-
tional equation (63) obtained from the factorization pro-
cedure, by using the relation

Θ(z,S; x) = Θ(qS + zpS) , qS(x) = 1 − pS(x) . (75)

This expression (75) has the following interpretation. Let
the above mentioned earthquake source triggers r after-
shocks. Then, the number of those aftershocks which fall
into the space domain S, is equal to

Rm(S; x|r) = X1 +X2 + · · · +Xr , (76)

where {X1, . . . , Xr} are mutually independent random
variables equal to 1 with probability pS and 0 with prob-
ability qS = 1 − pS . Thus, pS is the fraction of the after-
shocks which fall into the domain S.

The corresponding expression (75) can be interpreted
as follows. It gives the exact solution for the GPF of some
specific space-time branching process, such that the PDF
f(y; x) of the space positions y of each aftershock is the
same for all aftershocks and depends only on the position
x of the earthquake source. For this problem, we have

pS(x) =

∞∫∫

−∞
f(y; x)IS(y)dy . (77)

In the general case, the relation (75) offers the possibility,
at least semi-quantitatively, to describe the characteristic
features of the space-time branching processes, by using
the probability pS as an effective independent parameter
of the theory.

Let us mention a few useful consequences of the rela-
tion (75). It implies that the probability that r aftershocks
fall into the spatial domain S is equal to

P (r,S; x) =
∞∑

k=r

P (k) B(k, r,S; x) , (78)

where P (k) is the probability that some earthquake source
triggers k aftershocks and

B(k, r,S; x) =
(
k

r

)

pr
S q

k−r
S . (79)

This binomial probability B(k, r,S; x) is nothing but the
conditional probability that, if the mother earthquake
triggers k � r aftershocks then, r of them will fall into
the spatial domain S. If r 
 1, expression (79) can be
approximated by its well-known Gaussian asymptotics

B(k, r,S; x) =
1√

2πkpS qS
exp

[

− (r − kpS)2

2k pS qS

]

. (80)

If, in addition, P (k) decays slowly, for instance if it has a
power asymptotic for k → ∞, then expressions (78) and
(80) imply the asymptotic relation

P (r,S; x) ∼ 1
pS

P

(
r

pS

)

(r → ∞) . (81)

In view of this last relation (81), it seems reasonable to
assume that the asymptotic behavior of the probabilities
of the number of events for r 
 1 are the same for the case
of a finite S (pS < 1) and for an unbounded one (pS = 1).

5.3 Taking into account a magnitude threshold
of completeness md > m0

Recall that the ETAS model contains an “ultra-violet cut-
off m0, which is the minimum magnitude of earthquakes
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capable of triggering other earthquakes (see definition (2)
of the productivity). This ultra-violet cut-off is a nec-
essary regularization of any model of triggered seismic-
ity which combines self-similarity and factorization of the
Gutenberg-Richter (i.e., the magnitude of triggered events
is independent of the magnitude of the mother event).
Vere-Jones has recently introduced a new class of mod-
els generalizing the ETAS model in which the magnitudes
are no more independent, which allows one to get rid of
the need of an ultra-violet cut-off through the existence of
self-similar dependence relations [34]. Specifically, exact
self-similarity (without any magnitude cut-off) requires
that the magnitude of aftershocks are dependent upon the
magnitude of the triggering earthquake, a property which
is not commonly observed in the known phenomenology
of seismicity but is not completely excluded and will re-
quire new elaborate empirical tests to falsify (see [35] for a
theoretical study of Vere-Jones’ model and a comparison
with ETAS model).

In addition to the physically motivated ultra-violet
cut-off m0 of the ETAS model, seismic catalogs introduce
another characteristic magnitude md, which is the mag-
nitude of so-called completeness, i.e., roughly speaking,
only earthquakes of magnitude larger than md can be ob-
served. Since the value ofmd is controlled by observational
and instrumental constraints which change with time as
the technology and density of seismic stations evolve, md

has no reason to be the same as the ultra-violet cut-off
m0. The magnitude threshold md is approximately 1.5 for
the studied catalog (see below Sect. 6). For most modern
catalogs, md ≈ 2 and is larger than m0 (see [26] for esti-
mations of m0). Until now, our theory has not considered
this fact, which amounts to assuming that one can observe
all earthquakes of any magnitude above m0. But since we
will compare our predictions with empirical catalogs, it is
necessary to calculate the impact of the fact that empir-
ical data only reports seismic rates for event magnitudes
m ≥ md > m0. Sornette and Werner has shown that the
impact of md > m0 in the ETAS model is to renormal-
ize the branching ratio n and the rate 
 of spontaneous
seismic sources into apparent values na and 
a [36]. This
result holds with a good approximation for the full statis-
tical properties of aftershock numbers [37].

We now derive the corresponding consequences for our
problem. It turns out that a procedure analog to the fac-
torization procedure presented above in Section 5.1, which
accounts approximately for the finiteness of space-time
window, allows us to calculate exactly the effect of observ-
ing only earthquakes above the threshold md > m0. Be-
cause, in the ETAS model, magnitudes of different events
are statistically independent, then the random number of
observable events in a given space-time window can be
written similarly to (76) as a sum of independent sum-
mands, each summand equal to 1 if the corresponding
magnitude is larger than md, and equal to 0 otherwise.
Each event generates an independently random number
of observable events, possessing the following GPD

D(z,Q) = 1 −Q(md)(1 − z) , (82)

where Q(md) is the complementary CDF of random mag-
nitudes. With the Gutenberg-Richter law (4), it is given by

Q(md) = 10−b(md−m0) . (83)

Note that Q(md) → 1 for md → m0 and D(z,Q) → z.
Replacing in the GPF Θsp(z, τ ;S) given by (32) the ar-
gument z by D(z), we obtain the GPF of only observable
events:

Θobs
sp (z, τ ;S) = f̂ [〈
〉L(D(z,Q), τ,S)] . (84)

This replacement procedure z → D(z,Q) is based on the
property that different branches of triggered earthquakes
are independent. Applying this procedure to the previ-
ously derived expression (68) and taking into account the
equality

D(D(z,Q), p) = D(z,Qp) , (85)

expressing the statistical independence of the two condi-
tions that an event falls into the time-space window and
be in the observable range m > md, leads to

L(D(z,Q), τ,S) 	

τS

[
n

1 − n
Q(1 − p)(1 − z)+1− (1 −Q(1 − z))Θ(z,Qp)

]

.

(86)

This expression (86) replaces (74) to account for the con-
straint that only events of magnitudes m larger than
md > m0 are observed. Expression (86) reduces to (74)
as it should for Q(md) → 1 corresponding to md → m0.

Note that the general approach leading to (84) can be
used more generally to determine many other properties
deriving from event statistics. For instance, formd 	 5−6,
then expression (84) describes the statistics of “danger-
ous” events. Generalizing, if Q in (84) represents the prob-
ability that some event falls within the magnitude interval
M ∈ (m1,m2), then the r.h.s. of equation (84) describes
the statistics of the number of events whose magnitudes
belong to this interval. Generalizing further, consider that
each event of magnitude m can cause some damage quan-
tified by the function X(m), with characteristic function

ϕ(u|m) = 〈eiuX(m)〉 . (87)

If we assume that the total damage Y is additive (equal
to the sum of the independent damage of each separate
event), then the characteristic function of the whole dam-
age

C(u, ρ) = 〈eiuY 〉 (88)

is equal to

C(u) = f̂ [〈
〉L(ϕ(u), τ,S)] , (89)

where

ϕ(u) =
∫ ∞

m0

ϕ(u|m)p(m)dm. (90)
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5.4 Large space-time windows

For the discussion of this section, we omit for a while the
impact of md > m0 of the previous section, in order to
not burden too much the notations.

In order to get more insight into the properties of the
statistics of seismic rates in finite space-time windows, it
is useful to study the statistics of seismic rates in the limit
where the space and time windows are large. In this case,
Nin in (59) and p in (66) are both close to 1 and one may
replace equation (74) by

L(z, τ,S) 	 τS[1 − zΘ(z)] , (91)

where Θ(z) is solution of the functional equation

Θ(z) = G[zΘ(z)] . (92)

Accordingly, the GPF of the number of events in a (large)
space-time window as given by (32) takes the form

Θsp(z, ρ) = f̂(ρ [1 − zΘ(z)]) . (93)

Here and everywhere below,

ρ = 〈
〉 τS . (94)

Knowing the GPF Θsp(z, τ ;S), the probability Psp(r; ρ)
of event numbers r is obtained from the formula

Psp(r; ρ) =
1
r!
∂rf̂(ρ [1 − zΘ(z)])

∂zr

∣
∣
∣
∣
∣
z=0

. (95)

Equivalently, the integral representation of (95) reads

Psp(r; ρ) =
1

2πi

∮

C
f̂(ρ [1 − zΘ(z)])

dz

zr+1
, (96)

where C is a sufficiently small contour in the complex plane
z around the origin z = 0.

The main difficulty in calculating Psp(r; ρ) comes from
the fact that the GPF Θ(z) is defined only implicitly
by equation (92). To overcome this difficulty, we rewrite
the integral in (96) in the following equivalent form (see
App. A for more details on the method)

Psp(r; ρ) =
1

2πir

∮

C

df̂(ρ [1 − zΘ(z)])
zr

(r > 0) (97)

and use the new integration variable y = zΘ(z). Ex-
pression (92) shows that the inverse function of y is
z = y/G(y). As a result, the equation (97) transforms
into

Psp(r; ρ) =
ρ

2πir

∮

C′

Gr(y)Q(y; ρ)
dy

yr
, (98)

where

Q(z; ρ) =
1
ρ

df̂ [ρ (1 − z)]
dz

(99)

and C′ is a contour enveloping the origin y = 0 in the
complex plane y. One may interpret Q(z; ρ) in (99) as the
GPF of some random integer Rρ such that 〈Rρ〉 = ρ.

Notice that equation (98) has a simple probabilistic
interpretation. Indeed, it follows from (98) that

Psp(r; ρ) =
ρ

r
Pr {Rρ +R(r) = r − 1} , (100)

where Rρ is a random integer with GPF Q(z; ρ) given by
(99) while

R(r) = R1 +R2 + · · · +Rr , (101)

where {R1, R2, . . . , Rr, . . . } are mutually independent
random integers with GPF G(z). This implies that the
probabilities of each such random variable Ri, i = 1, ..., r,
has the power law asymptotics (20).

This remark provides a simple analysis of the asymp-
totic behavior of the probabilities Psp(r; ρ) for r 
 1, by
using expression (100). For 1 < γ < 2, the asymptotics of
the probability P (k; r) that the sum (101) is equal to k
goes to, for large r,

P (k|r) 	 1
(εr)1/γ

ψγ

(
k − nr

(εr)1/γ

)

, (102)

where

ε = −
(

n
γ − 1
γ

)γ

Γ (1 − γ) (103)

and ψγ(x) is the stable Lévy distribution with the two-
sides Laplace transform

∫ ∞

−∞
ψδ(x)e−sx dx = esδ

. (104)

It is known that

ψδ(x) ∼ x−δ−1

Γ (−δ) (x→ ∞) , ψδ(0) =
1

δΓ (1 − 1
δ )
.

(105)
One can calculate ψδ(x) for any 1 < δ < 2, using, for
instance, the following integral representation

ψδ(x) =
1
π

∫ ∞

0

exp
[
−uδ + ux cos

(π
δ

)]
sin

[
ux sin

(π
δ

)
+
π

δ

]
du .

(106)

For some numerical illustrations, we will use the case
δ = 3/2 for which the following analytical expression is
available

ψ3/2(x) =

1
π
√

3

[

Γ

(
2
3

)

1F1

(
5
6
,
2
3
,
4x3

27

)

−xΓ (
4
3

)
1F1

(
7
6
,
4
3
,
4x3

27

)]

.

(107)
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For r 
 ρ, one can neglect the random integer Rρ in the
r.h.s. of equation (100) and obtain from equations (100)
and (102) the following asymptotic formula

Psp(r; ρ) 	 ρ

r(εr)1/γ
ψγ

(
(1 − n)r − 1

(εr)1/γ

)

(r 
 ρ) .

(108)
If 1−n� 1 (the branching is close to but not exactly crit-
ical), equation (108) predicts the existence of two charac-
teristic power laws in the dependence of the probabilities
Psp(r; ρ) with r, a result already derived in [23].
1. For

1 � r � r∗ , with r∗ =
(

1
1 − n

)γ/(γ−1)

ε1/(γ−1)

(109)
we have

Psp(r; ρ) ∼ r−1−1/γ . (110)
2. For

r 
 r∗ , (111)
we recover the original power law (20) of the number
of first generation aftershocks

Psp(r; ρ) ∼ r−1−γ . (112)

For values of the parameters γ = b/α and n which are
typical of real seismicity modeled by aftershock triggering
processes, the cross-over number r∗ separating the two
power laws can be very large. For instance, for γ = 1.25
and n = 0.9, we obtain r∗ 	 104.

We should mention that the asymptotics (110) and
(112) are universal in the sense that they are inherent not
only to the statistics of windowed events, but also to statis-
tics of the total number of aftershocks triggered by some
mainshocks. These asymptotics were obtained in our pre-
vious paper [23] (by using the Lagrange series technique),
in the calculation of the total number of aftershocks trig-
gered by some mainshock. The technique based on Cauchy
integrals presented here is however more general and offers
an efficient method for exploring the probabilistic proper-
ties of events statistics in general branching models.

5.5 Prediction of the distribution of event numbers
for large time windows

We start with the general expression (32) of the GPF
Θsp(z, τ ;S) with the approximation (74) for L(z, τ,S) and
(86) for its extension including the effect of the threshold
md derived in Section 5.3. We use the relationship between
the probability Psp(r; ρ, p) and its GPF similar to expres-
sion (95) and its integral representation similar to (96).
Putting all this together, we obtain the following expres-
sion valid in the limit of large time windows and which
includes the effect of the threshold md:

Psp(r; ρ, p) =
1

2πi
×

∮

C
f̂
(
ρ

[ n

1 − n
Q(1 − p)(1 − z) + 1

− (1 −Q(1 − z))Θ(z;Qp)
]) dz

zr+1
(113)

where Θ(z; p) is the solution of the functional equation
(68). Similarly to the change of variable used to go from
(97) to (98), we introduce the new integration variable

y = (1 + (z − 1)Qp)Θ(z;Qp)

⇐⇒ z = Z(y) =
1
Qp

(
y

G(y)
+Qp− 1

)

. (114)

By construction of y, Θ(z;Qp) = G(y) which allows us to
obtain the following explicit expression

Psp(r; ρ, p) =
1

2πi

∮

C′

dZ(y)
dy

dy

Zr+1(y)

× f̂
(
ρ

[ n

1 − n
Q(1 − p)(1 − Z(y)) + 1

− (1 −Q(1 − Z(y)))G(y)
])
. (115)

This expression (115) allows us to make a precise quan-
titative prediction for the dependence of the distribution
Psp(r; ρ, p) of the number r of earthquakes per space-time
window as a function of r, once the model parameters
n, γ, p, δ, ρ and Q are given. We note that Pisarenko and
Golubeva have shown that the distribution of numbers
has the same tail as the distribution of seismic rates [11].
Thus, for the tails, our results can be interpreted either
as statements on the distribution of realized numbers of
earthquakes or on the distribution of average seismic rates.

We now turn to a brief description of the data analysis
and of their fits with (115).

6 Empirical analysis and comparison
with theory

6.1 Description of the data and procedure

We use the Southern Californian earthquakes catalog with
revised magnitudes (available from the Southern Califor-
nia Earthquake Center) as it is among the best one in
terms of quality and time span. Magnitudes ML are given
with a resolution of 0.1 from 1932 to 2003, in a region from
approximately 32◦ to 37◦N in latitude, and from −114◦
to −122◦ in longitude. In order to maximize the size and
quality of the data used for the analysis (to improve the
statistical significance), we consider the sub-catalog span-
ning the time interval 1994–2003 for ML > 1.5, which
contains a total of 86 228 earthquakes. The completeness
of this sub-catalog has been verified in the standard way
in [38] by computing the complementary cumulative mag-
nitude distribution for each year from 1994 to 2003 in-
cluded. The stability of the linear relationship of the log-
arithm of the number as a function of magnitude ML for
ML > 1.5 is taken as a diagnostic of completeness.

The spatial domain is covered by square boxes of L×L,
where we have varied L from 5 km to 50 km. Differ-
ent sizes for the time window have been considered from
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Fig. 7. Empirical complementary cumulative distributions
Fdata(r) ≡ ∫ ∞

r
Pdata(r

′)dr′ of the number r of earthquakes
in the space-time bins for L = 20 km and τ = 10 day, 100 days
and 1000 days (bottom to top). The smoothed curves are ob-
tained by numerical integration of expression (115) for the set
of parameters (116).

τ = 0.1 day to τ = 1000 days. Combining the space and
time windows leads to space-time windows or bins of size
L2 × τ . In each space-time bin, we count the number of
events and then construct the empirical distribution of
binned numbers (which are coarse-grained proxies for the
seismic rates).

6.2 Results

For a quantitative comparison between our theory and
the experimental data, we take L = 20 km and 50 km
with τ = 10, 100 and 1000 days as they correspond ap-
proximately to the domain of validity of our theory which
uses the “large window” approximation developed in Sec-
tion 5. Figure 7 (respectively Fig. 8) plots the empirical
complementary cumulative distributions

∫ ∞
r
Pdata(r′)dr′

of the number r of earthquakes in the space-time bins de-
scribed above for L = 20 km (respectively L = 50 km) and
τ = 10 day, 100 days and 1000 days. Figure 9 is the same
but with fixed τ = 100 days and for L = 5 km, L = 20 km
and L = 50 km. These (complementary) cumulative dis-
tributions minimize the statistical fluctuations that dom-
inate the statistics and provide a clear comparison with
theoretical results.

The theoretical curves shown in Figures 7–9 are ob-
tained by numerical integration of expression (115) for
the set of parameters

n ∈ [0.7; 1], γ = 1.1, δ = 0.15,
Q = 0.04, ρ = 0.96 × S × τdays (116)

where S = 1 for the 20 × 20 km2 domain. These param-
eters are determined by fitting the distribution obtained
for L = 20 km and τ = 100 days and are then held fixed
for all other distributions obtained for the other space-
time windows. There is however one remaining parameter
which is adjusted as a function of the size of each win-
dow: p = 0.45; 0.85; 0.92 for L = 5; 20; 50 km, respectively.
Indeed, recall that p introduced in (66) quantifies the av-
erage fraction of the total set of aftershocks which fall

Fig. 8. Same as Figure 8 for L = 50 km.

Fig. 9. Same as Figure 8 but with fixed τ = 100 days and for
L = 5 km, L = 20 km and L = 50 km (bottom to top).

within the space-time window S. This free parameter has
been introduced as a device in the factorization procedure
of Section 5.1. The slow variation of p from p = 0.85 for
the 20× 20 km2 area to p = 0.92 for the 50× 50 km2 area
is related physically to the slow power law decay of the
propagator φ(x) defined by (9).

In summary, the distribution for L = 20 km and
τ = 100 days allows us to determine the parameters given
by (116) which are kept fixed for the other distributions.
Then, for each space size L, we further determine their
corresponding parameter p by a fit of the distribution for
τ = 100 days. The p value thus obtained is kept fixed
in the theoretical calculation of the distributions for the
other time windows τ = 10 day and τ = 1000 days with
the same L.

6.3 Discussion of the obtained parameter values

Let us comment on the obtained values (116) of the pa-
rameters.

• The value of the branching ratio n ∈ [0.7; 1] is poorly
constrained but seems to be compatible with values
previously reported in the literature which range from
0.4 to 0.8 and more. The reason for this lack of sensi-
bility to n has already been alluded to in our theoret-
ical development. Consider the critical value n = 1 for
which the average number of aftershocks is equal to
〈R〉 = ∞, while the corresponding PDF P (r) of event
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numbers only insignificantly differs from the analo-
gous PDF in subcritical regimes. Recall that they dif-
fer significantly when r � r∗, where r∗ is given by
relation (109). The estimations given below relation
(112) show that, for γ = 1.25 and n = 0.9 for in-
stance, we have r∗ 	 104, which is much larger than
the maximal aftershock number rmax ∼ 200 which we
use to compare the theory and real data. The solution
of the inverse problem (i.e., looking for the values n
for which r∗ 	 rmax = 200, and for which the PDF
P (r) is indistinguishable from the critical one) gives
that, if γ = 1.25, n � 0.8, while if γ = 1.1, then
n � 0.7. Therefore, we have the same theoretical re-
sults relevant to the data range for any n in the interval
n ∈ (0.7, 1). We have indeed checked that the theo-
retical curves for windows of 100 and 1000 days and
the parameters listed in (116) (specifically the values
n = 0.7; 0.8; 0.9 and n = 0.96) gives practically undis-
tinguishable results.
It is worth noting an additional source of uncertainty
in the value of the branching ratio n as discussed pre-
viously [36,37]: the effect of not accounting for non-
observable seismicity (i.e., earthquakes of magnitude
m0 ≤ m < md), which may neverthess trigger observ-
able earthquakes, is to renormalize the true n into a
significantly smaller apparent value na.

• The possibility that the branching ratio is large (above
0.7 and perhaps close to 1) suggests that real earth-
quake sequences are close to criticality. This is remi-
niscent of the view that earthquakes are similar to the
avalanches of a self-organized critical system [39,40]
functioning at a dynamical critical point. In our con-
text, it is noteworthy that mean-field models of self-
organized criticality can be formulated in terms of
branching models [41,42].

• The value γ = 1.1, corresponding to α ≈ 0.9 (through
γ = b/α), is in reasonable agreement with previous
estimations of its value: α ≈ 1 [43,44], 0.5 ≤ α < 1
[25,45,46]. The quality of the fits does not deteriorate
significantly for γ up to 1.3. Therefore, our inversion
of the distribution of seismic rates does not provide a
rigid constraint on this parameter.

• We obtain practically the same quality of fits for δ in
the ranges 0.1 ≤ δ < 0.2. The choice δ close to zero
is consistent with the choice of the Cauchy distribu-
tion as a proxy for the heterogeneity of the spatial dis-
tribution of spontaneous earthquake sources inferred
for the stress field and deduced from previous the-
oretical [30,31] and empirical analysis of earthquake
sources [29]. We have also used functional forms for
fδ(x) other than (15) to describe the pre-existing het-
erogeneity of spontaneous earthquake sources, such as
half-Gaussian, exponential as well as different variants
of power laws. Overall, we find that we need fδ(x) to
have a power law tail close to the Cauchy distribution
in order to get reasonable fits. This shows that the
ETAS model as well as any other model of this class of
triggered seismicity need to be generalized to account
for a pre-existing heterogeneity of the crust, which

controls the occurrence of the spontaneous earthquake
sources. The strong sensitivity of the quality of the fits
with respect to the fractal structure of the spontaneous
sources quantified by the exponent δ is a surprising but
positive bonus of this work. We did not expect a pri-
ori that the distribution of seismic rates would teach
so much about the heterogeneity of the seismic active
regions.

• The value Q = 0.04 leads to m0 ≈ 0 with expres-
sion (83), using md = 1.5 for the Southern Californian
earthquakes catalog and b = 1. This value for the min-
imum triggered earthquake magnitude is compatible
with the estimations obtained independently in [26].

• The value ρ = 0.96 × τdays for the 20 × 20 km2

domain translates into the following average number
of events inside that window: 〈Rsp(τ,S)〉 	 ρ

1−n 	
10 × τ (in units of days), taking n = 0.9. This would
predict about 10 events on average per day in a space
window of 20×20 km2. But of course, we only observe
the fractionQ = 0.04, leading the observation of about
0.5 event per day in a space window of 20 × 20 km2,
which is reasonable.

• We cannot exclude that these results may be depen-
dent on the temporal window of our study (1994–
2003), which was chosen for its quality, if earthquake
processes are not fully stationary over this time scale.

• In the above analysis, we have assumed that the cat-
alog of seismicity for Southern California is complete
for m > 1.5. This is unfortunately not the case after
a large earthquake. The completeness magnitude 1 h
after a m = 7 earthquake is roughly m0 = 4 [44,47].
Therefore assumingm0 = 1.5 underestimates the num-
ber of events within the first hour by a factor about
10b(4−1.5) ∼ 300. Can this “transient time-magnitude”
incompleteness of the catalog change the distribution
of event numbers?
It is difficult to conclude with certainty. First, in con-
trast with [44,47] which explored the conditional win-
dowed statistics, under the condition that there is some
large mainshock at the beginning of the time series, we
are here exploring the unconditional windowed statis-
tics, where the statistical weight of large events is not
so much dominating (especially if α < b). We can also
expect the “transient time-magnitude” incompleteness
to become negligible for sufficiently large time win-
dows. We have checked that this is the case by gen-
erating synthetic catalogs with the ETAS model and
by mimicking the “transient time-magnitude” incom-
pleteness by pruning the catalog to remove the events
with too small magnitudes and too close to previ-
ous events according to the empirical laws reported in
[44,47]. We find indeed that the distortion is negligible
for the largest time windows but may be significant for
the smallest time window of 10 days. This “transient
time-magnitude” incompleteness may thus provide an
additional source of discrepancy with our theoretical
predictions. Accounting for such distortion is difficult
as it requires a full space-time description to gener-
alize the “transient time-magnitude” incompleteness
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into a “transient space-time-magnitude” incomplete-
ness, which prevents us from applying the correction
procedure of [44].
To address this issue, we have performed the following
test.
1. for each event, we define a spatial neighborhood

(as usual proportional to the length L of the rup-
ture) and a temporal neighborhood (using the for-
mula of [44]). For the temporal neighborhood, the
magnitude threshold is taken equal to 1.5 (which is
equal to the magnitude detection threshold in the
catalog).

2. After each event, we attribute a tag equal to 1 to
all events which belong to the space-time neighbor-
hood of the event, as previously defined. All other
events have the tag equal to 0.

3. We then construct the histograms of the numbers
of events in the space-time boxes, over all boxes
which have only earthquakes with tag equal to 0.
All other boxes are excluded from the statistics. By
so doing , we exclude from the statistics the events
which may be affected by the temporal “shadow”
of one or more preceding events.

This procedure is rather conservative as an event
falling in the “shadow” of a M = 2 event, for instance,
will be excluded, but it is useful to provide an insight
on the impact of temporal incompleteness on our re-
sults. We find that the difference between our theo-
retical predictions and the obtained histograms of the
statistics of event numbers is not significantly better
or worse than the difference shown in Figures 7–9, sug-
gesting that the temporal incompleteness of the cata-
log is not the main explanation for the discrepancies
between theory and empirical data.

6.4 Limits of the theoretical approach

Overall, the theory provides a reasonable representation
of the behavior of the complementary cumulative distri-
butions as L and τ are varied. However, it is clear that
there are discrepancies, and all the more so, the smaller
τ is. This is not really surprising as the following reasons
can be invoked.

1. The empirical data may be incomplete for different
reasons, in particular as the “ergodic” time over which
intermittent changes of seismic activity should be av-
eraged out is of the order of the repeat time of the
largest earthquakes in California, which is of the order
of 150 years.

2. In order to obtain the explicit formula (115), we have
been forced to use an approximation which requires
relatively large L and τ , as explained in section 5. In
particular, it follows from the condition (52) and from
estimations of the time scale c1 given by (46) for differ-
ent values of the Omori power exponent θ and of the
branching ratio n that the large time-window approx-
imation works for the time windows investigated here
only if θ ≥ 0.2 and n ≤ 0.9 typically. The reasonable

agreement with our data analysis for time windows of
10 days and larger suggests the validity of this range
of values for θ and n.

3. The experimental distribution Pdata(r) exhibits an ap-
proximate power law tail, as reported in Figures 7–
9. In contrast, while the numerical evaluation of for-
mula (115) is reasonably in agreement with the data for
r � 100, the asymptotic tail of expression (115) seems
to decay faster. This is curious given that the tail of
the theoretical distribution should be given asymptot-
ically by the power laws (110) and (112) for unwin-
dowed events. We believe the discrepancy may result
from the combination of the windowing effect (the for-
mulas (110) and (112) are actually derived strictly for
unbounded domains), the threshold magnitude and the
value of gamma close to one.

4. Another possible source of error lies in the approxi-
mate relation (69). From a probabilistic point of view,
this approximation amounts to neglect the possibility
that more than one event in the space-time window is
triggered by a spontaneous source positioned outside
the space window. In addition, the factorization pro-
cedure of Section 5.1 (see also Sect. 5.2) accounts only
semi-quantitatively for the finiteness of the space do-
main. A detailed discussion of the applicability of the
factorization procedure can be found in Section 7.

Using the same technique in terms of GPF’s shows that
the distribution of the total number of aftershocks has two
power law regimes ∼1/r1+

1
γ for r < r∗ 	 1/(1−n)γ/(γ−1)

and ∼1/r1+γ for r > r∗ [23]. We expect the same laws to
describe the intermediate asymptotics and asymptotics of
windowed distributions of event numbers. Pisarenko and
Golubeva [11], with a different approach applied to much
larger spatial box sizes in California, Japan and Pamir-
Tien Shan, have fitted the distribution of event numbers
by a power law

Pdata(r) ∼ 1/r1+ζ (117)

with an exponent ζ < 1 which could perhaps be associ-
ated with the intermediate asymptotics characterized by
the exponent 1/γ < 1, found in our analysis [23]. By using
data collapse with varying spatial box sizes on a Califor-
nia catalog, Corral finds that the distribution of seismic
rates exhibits a double power-law behavior with ζ ≈ 0 for
small rates and ζ ≈ 1.2 for large rates [2]. The first regime
might be associated with the non universal bulk par of the
distribution found in our analysis. The second regime is
compatible with the prediction for the asymptotic expo-
nent ζ = γ. Concerning the collapse of the distributions
for different time windows proposed by Corral, first we
would like to remark that this collapse involves a rescal-
ing of the different distributions as a function of the size of
the space-time windows, which can be predicted from our
theoretical analysis. Secondly, a collapse in log-log plot is
only an indication and certainly not a proof of existence.
In other terms, any collapse contains always some noise
and cannot be taken as a proof “by eye.” Complemen-
tary to the empirical data collapse proposed by Corral [2],
we have provided a physical mechanism and a theory to
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predict the variation of the distributions with the size of
the space-time windows.

Note that the derivation of section 5.4 using the large
time window approximation is a priori sensitive to the
value of n, and in particular the approximation should
not hold for n → 1. In contrast, the fitting procedure
leading to the set of parameters (116) is quite robust to
changes in n and in particular it works also for n 	 1. The
resolution of this paradox is obtained as follows. We indeed
offered a first estimation of the domain of validity of the
large time window approximation in terms of condition
τ 
 c1 given by equations (52) with (46), showing that
c1 is highly sensitive to the closeness n to 1. In particular,
c1 = ∞ for n = 1. It turns out that this condition (52)
becomes irrelevant for n → 1 because it is based on the
analysis of the average seismicity rate, while the relevant
quantity should be the full distribution of rates, which
is well-behaved as n → 1, as explained in the preceding
paragraph. Using the properties of the statistics of seismic
rates conditioned on generation number discussed in the
next section 7, we will derive an improved condition (130)
for the validity of the large window approximation, which
reads t∗ 	 c (k∗/ω)1/θ, where ω is some tolerance level
(say ω = 0.1) while k∗ is the number of generations for
which most earthquakes have been triggered in the space-
time window. Figure 11 below shows that the large time
window approximation indeed remains valid for n close to
1 and is rather insensitive to the value of n.

Let us also mention other related works. Neglecting
the space-time differentiation of events within a cascade,
simple branching models of earthquakes have been for-
mulated in the energy space and give also a power law
distribution of numbers with exponent determined from
the rate of energy cascade and its heterogeneity [51–53].

7 Theoretical tests of the theory using
statistics conditioned on generation number

In our theoretical development to obtain the predic-
tion (115) that could be compared with empirical data, we
have been obliged to make two main approximations: (1)
assuming that the duration τ of the time window [t, t+ τ ]
is sufficiently large (i.e., the inequality (52) holds), we
have replaced the GPF Θ(z, τ,S; x) by its asymptotics
Θ(z,S; x); (2) we have used a factorization procedure to
take into account quantitatively the finiteness of the spa-
tial window S.

In this section, we attempt to clarify further the do-
main of application of these two approximations by testing
them on other event statistics conditioned on fixed number
of generations. Numerical calculations of the exact PDF
are compared with the approximations.

7.1 Large spatial windows

Let us consider the statistics of aftershocks triggered over
the whole space during the first k generations by some

Fig. 10. Distributions Pk(r) given by (119) for γ = 1.25,
n = 1, for different numbers of generations k = 1; 2; 3; 5; 8.
The upper curve corresponds to asymptotic distribution P (r)
given (120) corresponding to k → +∞, while lower one corre-
sponds to the distribution P1(r) given by (19) of the number
of aftershocks of first generation.

mother event. The corresponding GPF of the number of
aftershocks triggered in the course of k generations is de-
fined by the following iterative recurrence equation

Θk(z) = G[zΘk−1(z)] , Θ1(z) = G(z) . (118)

One can calculate the corresponding probabilities of after-
shock numbers by using the Cauchy integral

Pk(r) =
1
2π

∮

C
Θk(z)

dz

zr+1
. (119)

Furthermore, we can make use of the knowledge that, as
k → ∞, the GPF Θk(z) converges to the asymptotic GPF
Θ(z) which is the solution of equation (92). It is easy to
show that one can calculate the corresponding probabili-
ties using an equality analogous to (98):

P (r) =
1

2πi(r + 1)

∮

C′

Gr+1(y)
dy

yr+1
. (120)

Figure 10 shows the distribution Pk(r) of aftershocks num-
bers, obtained by a numerical calculation of the integral
(119) for different values k = 1, 2, 3, 5, 8 and for γ = 1.25
and in the critical case n = 1. It also shows the corre-
sponding asymptotic distribution for k → +∞ obtained
by integration of (120). Note that, even for in this critical
case, the distribution for k = 8 generations is already al-
most undistinguishable from the asymptotic distribution
including an infinite number of generations, at least for
r � 250. Figure 11 clarifies further the convergence rate
by plotting the ratio

pk(r) =
Pk(r)
P (r)

(121)

for different values k.
The information on the number of generations neces-

sary to reach the asymptotic regime gives us the possi-
bility of estimating the corresponding characteristic time
beyond which the asymptotic distribution P (r) becomes a
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Fig. 11. Ratios (121) as a function of event numbers r for
different values of the generation number k, demonstrating the
convergence of the distributions Pk(r) to the asymptotic dis-
tribution P (r). Bottom to top: k = 2; 4; 6; 8; 10.

good approximation of Pk(r). Let T (k) denote the random
time at which a k-th generation aftershock is triggered. It
is equal to

T (k) = τ1 + τ2 + · · · + τk , (122)

where {τ1, τ2, . . . τk, . . . } are mutually independent ran-
dom waiting times between the occurrence of a mother
earthquake and one of its first-generation aftershock. We
define the ω-th waiting time quantile t(ω, k) of generation
k by

Q[t(ω, k), k] = Pr{T (k) > t(ω, k)} = ω . (123)

Thus, 1 − ω is the probability that the duration of any
chain of k successive generations of triggered aftershocks
is smaller than t(ω, k). Choosing some confidence level (for
example 1−ω = 0.9), one may assert that, during the time
t(ω, k), all aftershocks of the k-th generation have already
been triggered. Let k = k∗ be such that the corresponding
probability Pk∗(r) is close to the asymptotic P (r). Then,
one may interpret

t∗ = t(ω, k∗) (124)

as an estimation of the characteristic time for the validity
of the asymptotic distribution P (r).

The asymptotic expression for the probability Q(t, k)
defined by (123) for k 
 1 can be determined by using
the fact that the terms τk of the sum (122) are determined
by Omori’s law (8) with 0 < θ < 1. For k 
 1, Q(t, k) is
asymptotically close to

Q(t, k) = Fθ

(
t

c[kΓ (1 − θ)]1/θ

)

, (125)

where

Fθ(x) =
∫ ∞

x

ϕθ(y) dy (126)

and ϕθ(x) is the one-sided Lévy stable distribution defined
by the Laplace transform

ϕ̂θ(u) =
∫ ∞

0

ϕθ(x)e−ux dx = e−uθ

. (127)

In particular

F1/2(x) = erf
(

1
2
√
x

)

. (128)

The following asymptotic behavior holds

Fθ(x) 	 x−θ

Γ (1 − θ)
(x
 1) . (129)

Substituting (125) and (129) into (123), we obtain the
following estimation for t∗ defined by (124)

t∗ 	 c

(
k∗
ω

)1/θ

. (130)

For instance, for θ = 1/2, k∗ = 8, ω = 0.1 and c = 2 min,
then t∗ 	 9 days. Note that t∗ is highly sensitive to the
value of θ. Indeed, θ = 1/3 (resp. 2/3) with all other
parameters being the same gives t∗ 	 700 days (resp. t∗ 	
1 day).

Expression (130) is related to condition (52) (and ac-
tually improves on it) as follows. The condition (52) with
(51) can be expressed by introducing, similarly to the rea-
soning leading to (130), some small threshold ω � 1 such
that (52) translates into Nout(τ) � ω. Correspondingly,
we can introduce τ∗ such that, if τ > τ∗, then the dura-
tion of the window is large at the ω level:

ω 	 n

Γ (1 − θ)

( c1
τ∗

)θ

. (131)

Using (46), we get

τ∗ 	 c

(
n

ω(1 − n)

)1/θ

. (132)

The two expressions (132) and (130) have a similar struc-
ture. The only difference is that the characteristic gener-
ation number k∗ is replaced by the factor n/(1 − n). For
n not too close to 1, n/(1 − n) gives a not unreasonable
estimation of k∗. For n close to 1, expression (130) should
be preferred as it provides an improvement to (52) based
on the calculation of quantiles rather than on the mean
rate behavior.

7.2 Finite spatial windows

A natural generalization of the iterative procedure (118)
for finite spatial window S allows to estimate the cor-
responding aftershock statistics. Consider an earthquake
occurring at point x. Then, the PDF of the space posi-
tions y of an aftershock of the kth generation is given by
φk(y − x), where

φk(y) = φ(y)⊗ · · · ⊗︸ ︷︷ ︸
k

φ(y) (133)
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is the k-times convolution of the space propagator φ(y)
(one example is given by (9)). Correspondingly, the prob-
ability for an aftershock of the k-th generation to fall into
the space window S is equal to

pk(S; x) =
∫∫

S
φk(y − x)dy . (134)

Provided these probabilities are known, one can determine
the GPF Θk(z,S; x) of the number of aftershocks of the
k generation occurring in the spatial domain S by using
the following iteration

Θ1(z,S; x) =G (p1(z − 1) + 1) ,
Θ2(z,S; x) =G [(p1(z − 1) + 1)G (p2(z − 1) + 1)]
Θ2(z,S; x) =G [(p1(z − 1) + 1)G [(p2(z − 1)

+1)G [(p3(z − 1) + 1)]]] , (135)

and so on up to the order k. Then, the distribution of the
number of aftershocks of the k generation is given by

Pk(r,S; x) =
1
2π

∮

C
Θk(z,S; x)

dz

zr+1
. (136)

These expressions are general and hold for any space prop-
agator φ(y). Let us now specialize to the form (9) for the
spatial propagator φ(y), with η = 1,

φk(x) =
kd

2π(x2 + k2d2)3/2
(137)

corresponding to an asymptotic 1/|x|3 decay law often ar-
gued on the basis of the shape of the elastic Green function
in a three dimensional space. From (134), we then have

pk(S; x) = P
(
�

kd
,
x

kd

)

(138)

where

P(u, v) =
2
π

∫ u

0

E

(
4vs

1 + (v + s)2

)

× sds

[1 + (v − s)2]
√

1 + (v + s)2
. (139)

Here, E(m) is the complete elliptic integral

E(m) =
∫ π/2

0

√
1 −m sin2 ε dε . (140)

Figure 12 shows the distributions (138) for � = 10d (re-
call that � is the radius of the assumed circular domain
S centered on the origin, which has been used in (180))
and for different positions x of the mother earthquake,
given by x/� = 0; 0.4; 0.6; 0.8; 1; 1.2; 1.4; 1.6 from top
to bottom. The separation by the curve for x/� = 1 into
two families has a simple explanation. For x/� ≤ 1, the
mother event lies within the spatial domain S of interest

Fig. 12. Plots of the probabilities Pk(r,S ;x) given by (138)
for γ = 1.25, n = 0.99, � = 10d and for different positions of
the mother earthquake: x/� = 0; 0.4; 0.6; 0.8; 1; 1.2; 1.4; 1.6.
Recall that � is the radius of the assumed circular domain S
centered on the origin. The two families of curves separated by
the central one for x/� = 1 are explained in the text.

Fig. 13. Plots of the distribution P (r,S ;x) of the total num-
ber r of aftershocks falling within the disk S for a mother
earthquake at the origin x = 0 and for different values of the
circle radius �. Bottom to top: �/d = 1; 3; 5; 10; 20.

and it is thus counted as generation 0. Its immediate after-
shocks are most probably adjacent to it and thus have a
large probability to also fall within S. As the number k of
generation increases, aftershocks diffuse away and are less
and less likely to fall within S. In contrast, for x/� > 1,
the mother earthquake falls outside S. Therefore, there is
not event at the zeroth generation in S, hence the curves
start from zero. The first generations of aftershocks which
are most likely to be nearby the mother earthquake fall
rarely within S. Only as aftershocks of higher generation
levels develop and diffuse away from the mother earth-
quake, can they invade S. Of course, at large generation
numbers, the aftershocks diffuse away from any finite spa-
tial domain, explaining the decay of Pk(S; x) to zero for
large k’s.

Figure 13 plots the asymptotic distribution P (r,S; x)
as a function of the number r of aftershocks for γ = 1.25,
n = 0.99, for different values of the radius � of the disk S.
The mother earthquake is assumed to occur at the origin,
that is, at the center of the disk S. P (r,S; x) is obtained
by using (136) for k = 25 generations, which is certainly a
very good approximation to P (r,S; x) = Pk→+∞(r,S; x).
Figure 14 plots P (r,S; x) as a function of the number r
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Fig. 14. Plots of the distribution P (r,S ; x) of the total number
r of aftershocks falling within the disk S for different positions
x of the mother earthquake at fixed disk radius �/d = 10. Bot-
tom to top: x/� = 1.4; 1.2; 1; 0.8; 0.6; 0.4; 0.2; 0. The upper
curve thus corresponds to an infinite disk � = +∞.

of aftershocks, at fixed �/d = 10 for various positions of
the mother earthquake, for the same parameters γ = 1.25,
n = 0.99. One can observe that, when the mother earth-
quake is inside the disk S (x = 0.8�; 0.6�; 0.4�; 0.2�; 0),
the corresponding distributions are close to each other
as predicted in Section 5.1. When the mother is out-
side the disk S (x = 1.4�; 1.2�; 1), the distributions differ
from the previous case and are significantly smaller. This
gives additional support in favor of the linear approxima-
tion (69), which we used in Section 5.1. More precisely,
these properties result directly from the analysis of Sec-
tion 5.1, in which we notice below equation (65) that, for
�
 d, the factor pS(x) approaches a rectangular function,
which leads to the approximation pS(x) 	 const. = p for
x ∈ S. This leads to the natural assumption that the GPF
Θ(z,S; x) is almost the same for all interior source posi-
tions x ∈ S. This means in turn that the corresponding
distribution P (r,S; x) should be almost the same for all
x ∈ S. This remarkable fact is illustrated in Figure 14
in which the curves for the interior source probabilities
merge.

7.3 Testing the factorization approach

We can now test the factorization approximation devel-
oped in Section 5.1 to take into account the finiteness of
the space window S by comparing it with the approach
in term of the statistics over successive generations of the
previous section. We thus compare the asymptotic dis-
tribution P (r,S,x = 0), obtained by calculating the inte-
gral (136) for a large enough generation number k (k = 25
is found to be sufficient), with the factorization approxi-
mation

P (r, p) =
pr

2πr

∮

C′

dG(y)
dy

Gr(y) dy
[y − (1 − p)G(y)]r

, (141)

with an appropriate value of the parameter p = pS , de-
fined as the fraction of the aftershocks which fall into the
domain S. Figure 15 shows this comparison for four dif-
ferent values of �/d = 10; 7.5; 5; 2.5. The upper curve in

Fig. 15. Comparison of the asymptotic distribution
P (r,S ,x = 0), obtained by calculating the integral (136) for
a large enough generation number k (k = 25 is found to be
sufficient), with the factorization approximation P (r, p) given
by (141), where p = pS is defined as the fraction of the af-
tershocks which fall into the domain S . The upper curve in
each panel is the distribution (120) for an infinite domain
�/d = +∞, as a reference. The different panels correspond
to �/d = 10; 7.5; 5; 2.5, with γ = 1.25, n = 0.99, x = 0.

each panel is the distribution (120) for an infinite domain
�/d = +∞, as a reference. There is some discrepancy be-
tween P (r,S,x = 0) and P (r, p) given by (141). The main
difference is that the true distribution P (r,S,x = 0) de-
cays faster than the factorization approximation P (r, p)
for large r. We recall that, due to (81), the asymptotic
behavior of the distribution P (r, p) obtained under the
factorization approximation is the same as for an infi-
nite domain given by (120). Notice that the crossing be-
tween theoretical and empirical data curves in Figure 7
for L = 20 km and in Figure 9 for L = 5 and 20 km
are consistent with the crossing observed in Figure 15 be-
tween the factorization approximation and the true distri-
bution. Furthermore, the faster rate of decay of the PDF’s
for finite areas may explain in part that the observation
that the exponent q ≈ 1.6 in (117) may be larger than
1 + γ. Nevertheless, Figure 15 shows that an appropriate
choice of the parameter p = pS allows us, at least semi-
quantitatively, to take into account the finiteness of the
area S.

8 Discussion

We have presented a general formulation in terms of gen-
erating functions of the space-time organization of earth-
quake sequences, in the framework of general branching
processes. We have applied this approach to the ETAS
(Epidemic-Type Aftershock Sequence) model of triggered
seismicity. In view of the formidable difficulty in obtaining
exact solutions to the nonlinear integral equations involv-
ing the generating functions, we have developed several
approximation schemes which have been tested by com-
parison with exact numerical calculations. We have used
the corresponding predictions to fit the distribution of
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seismic rates in four finite space-time windows in a Califor-
nia seismic catalog. The space-time windows differ by their
time interval going from τ = 10 day to τ = 1000 days.
The fits have been found to account satisfactorily for the
empirical observation. In particular, we have adjusted the
parameters of the theory on the time window τ = 100 days
and have then used these frozen parameter values in the
theory to calculate the distribution for the other time win-
dows. This tests the rigidity of the theory to account si-
multaneously for the distributions at different time scales.
In this process, we have found it necessary to augment
the ETAS model by taking account of the pre-existing
frozen heterogeneity of spontaneous earthquake sources.
We have discussed the physical justification of this gener-
alization in terms of pre-existing stress and fault networks,
which constrain the form of the pre-existing heterogene-
ity. Our findings have also important implications to assess
the quality of models developed to forecast future seismic-
ity, and suggest to re-examine current procedures which
assume Poisson statistics in the construction of likelihood
scores.

We thank warmly G. Ouillon for help in the analysis of the
data and in the preparation of the corresponding figures. This
work is partially supported by NSF-EAR02-30429, and by
the Southern California Earthquake Center (SCEC) SCEC
is funded by NSF Cooperative Agreement EAR-0106924 and
USGS Cooperative Agreement 02HQAG0008. The SCEC con-
tribution number for this paper is 861.

List of symbols

⊗: convolution operator;
α: productivity exponent defined in (2);
a(t): complementary cumulative Omori law defined in
(40);
b: b-value of the Gutenberg-Richter distribution (empiri-
cally close to 1);
c: regularizing time scale that ensures that the seismicity
rate remains finite close to the mainshock
c1: characteristic time-scale of aftershock branching pro-
cesses defined in (46);
d: characteristic spatial scale of the spatial propagator
φ(x);
δ: exponent of the power law distribution fδ(x) of het-
erogenous sources;
η: exponent of the spatial propagator φ(x);
E(m): complete elliptic integral (140);
Eθ(x): Mittag-Leffler function;
fδ(x): probability density distribution of spontaneous
sources defined by (15);
Φ(t): time propagator quantifying the rate of daughter
triggering of first generation at time t after a mother that
occurred at time 0;
Φ̂(u): Laplace transform of Φ(t);
f̂δ(u): Laplace transform of fδ(x);
φ(x): spatial propagator quantifying the probability for a
daughter to be triggered at a distance x from its mother;

φ̃(q): Fourier transform of φ(x);
φ̃S(q): Fourier transform of φ(x) restricted in the space
domain S;
ϕθ(x): one-sided Lévy stable distribution;
Φ(x−x′, t′): PDF of the position x′ and instant t′ of some
first generation aftershock, triggered by a mother event,
arising at the instant t = 0 and at the point x, defined in
(7);
GPF: generating probability function;
G(z): GPF of the number R1 of first generation after-
shocks triggered by a mother aftershock of arbitrary mag-
nitude;
γ: reduced exponent defined by γ = b/α;
Γ (x): complete Gamma function;
Γ (θ, x): incomplete Gamma function;
κ: constant factor controlling the value (6) of the branch-
ing ratio;
Kη/2(x): modified Bessel function of the second kind;
�: radius of the circular domain S;
L(z, τ,S): function occurring in the definition (23) of
Θsp(z, τ,S);
m: magnitude of an earthquake;
m0: minimum magnitude of earthquakes capable of trig-
gering other earthquakes (ultraviolet cut-off of the the-
ory);
md, ML: magnitude of completeness of seismic catalogs;
µ: mark associated with an earthquake of magnitude m
according to (2);
n: branching ratio equal to the average number of after-
shocks of first generation per mother;
Nm: average number of children (triggered events or af-
tershocks) of first generation) given by (1);
PDF: probability density function;
Nsp(τ,S): rate of events defined in (36);
p: average over all possible spatial positions of mother
earthquakes of the fraction of aftershocks which fall within
the space-time window S;
P1(r): PDF of R1;
Pdata(r): probability density function of the number r of
events;
p(m): Gutenberg-Richter distribution (4);
pµ(r): Poisson statistics;
pS(x): overall fraction of aftershocks, triggered by a
mother earthquake at position x, which fall within the
domain S;
ψδ(x): two-sided Levy distribution defined by (104)–(106);
Ψ(z, t, τ,S; x): auxiliary function describing the space-
time dissemination of aftershocks triggering by some
mother event;
Q = Q(md): fraction of observable events;
Θ(z, t, τ,S; x): GPF of aftershocks triggering by some
mother event inside the space-time bin;
r: number of events;
R1: number of first generation aftershocks triggered by a
mother of arbitrary magnitude;
〈Rsp(τ,S)〉: average of the total number of events inside
the space-time window defined in (34);
σ1: standard deviation of R1;
ρ: average number of spontaneous sources in the space-
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time bin τS defined in (94);

: average number of spontaneous mother earthquakes per
unittime and per unit surface;
S: spatial domain (or bin);
τ : time interval (in unit of days) used to define the space-
time bins;
θ: exponent of the time propagator Φ(t);
Θsp(z, τ,S): GPF of the number of events (including
mother earthquakes and all their aftershocks of all gener-
ations), falling into the space-time window {[t, t+ τ ]×S};
Θ(z, t−t′, τ,S; x): GPF of the number of aftershocks trig-
gered inside the space-time window {[t, t+τ ]×S} by some
mother event that occurred at time t′;
Θ(z, τ,S; x): GPF of the numbers of aftershocks triggered
till time τ inside the space window S by some mother
event arising at the instant t = 0 and at the point x (de-
fined in (26));
z: running variable of generating probability functions;
ζ: exponent of the power law distribution (117) of earth-
quake numbers in space-time bins.

Appendix A: The formalism of generating
probability functions (GPF)

In this Appendix, we recall the definition of the GPF of
some non-negative random integer R (it may be, for in-
stance, the number of earthquakes within some space-time
window) and illustrate possible applications of the GPF
formalism to explore the statistical properties of branch-
ing processes. Let us denote by P (r) the probability that
the random number R is equal to some r. Then, by defi-
nition, the GPF of the random integer R is equal to the
series

G(z) = P (0)+P (1)z+P (2)z2+ · · · =
∞∑

r=0

P (r)zr . (142)

As a first illustration, consider the case where the ran-
dom integer R is distributed according to Poisson statis-
tics with a mean value 〈R〉 = ν, such that

P (r) =
νr

r!
e−ν . (143)

Then, the summation of the series in (142) gives

G(z) = eν(z−1) . (144)

One interest of the GPF formalism is that, if one knows
the GPF G(z) of some random integer R, one can then
calculate the corresponding probabilities P (r) using

P (r) =
1
r!
drG(z)
dzr

∣
∣
∣
∣
z=0

. (145)

In some cases, especially for numerical calculations, it
is more convenient to use the Cauchy integral formula
(which is equivalent to (145))

P (r) =
1

2πi

∮

C
G(z)

dz

zr+1
, (146)

where C is an arbitrary contour which lies inside the circle
|z| � 1 in the complex plane z and envelops the origin
z = 0. From the knowledge of the GPF G(z), one can also
obtain easily all the statistical moments of the random
integer R. For instance, the average of the random integer
R is given by

〈R〉 ≡
∞∑

r=1

rP (r) =
dG(z)
dz

∣
∣
∣
∣
z=1

. (147)

The GPF formalism is particular useful to study the
statistical properties of branching processes, because it
uses optimally the independence between the different
branches. Consider the following branching process in
which some event triggers a random number R1 of other
(first-generation) events, where the random number R1

is described by a probability function associated with the
GPF G1(z). Let in turn each first-generation event trigger
independently random second-generation events, whose
number per first-generation event is also characterized by
the same GPF G1(z). Then, due to the independence of
the random numbers of events of first and second genera-
tions, the GPF of the total number of events of both first-
and second-generation events is equal to

G2(z) = G1[zG1(z)] . (148)

Let in turn each second-generation event trigger indepen-
dently random events, whose numbers are again charac-
terized by the same GPF G1(z), and so on over the infinite
range of all possible generations. Then, the GPF G(z) of
the total number of events over all generations satisfies
the functional equation

G(z) = G1(zG(z)) . (149)

As an illustration, let us find the average of the total num-
ber of triggered events over all generations. Using relation
(147) and the normalizing condition G(z = 1) = 1, differ-
entiating equation (149) with respect to z, we obtain

〈R〉 = n(1 + 〈R〉) → 〈R〉 =
n

1 − n
, (150)

where

n =
dG1(z)
dz

∣
∣
∣
∣
z=1

(151)

is the average number of first generation events. If n < 1,
then one call the branching process subcritical. If n = 1,
it is critical and supercritical (explosive) for n > 1.

We end this brief tutorial by mentioning a calculation
technique based on the Cauchy integral formula (146),
that we use in this paper to calculate the probabilities
P (r) of the total number of events for the branching pro-
cess under study, for instance to obtain equation (98).
The problem is that, in the general case, there is no
known explicit solution of the functional equation (149).
To overcome this difficulty, let us introduce the new in-
tegration variable y = zG(z), such that equation (149)
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reads G(z) = G1(y) and thus z can be expressed as func-
tion of y as

z =
y

G1(y)
. (152)

By integration by part, the integral in (146) can be written

P (r) =
1

2πir

∮

C

dG(z)
zr

. (153)

Since G(z) = G1(y), dG(z) = dG1(y). Using (152) and
again integrating by part, we obtain

P (r) =
1

2πi(r + 1)

∮

C′

Gr+1
1 (y)

dy

yr+1
, (154)

where C′ is some contour inside the circle |y| � 1 envelop-
ing the origin y = 0 in the complex plane y. One can,
in particular, replace C′ by the circle |y| = 1 and rewrite
(154) in the more convenient form for numerical calcula-
tions

P (r) =
1

2π(r + 1)

∫ π

−π

Gr+1
1 (eis)e−irsds . (155)

Appendix B: Derivation of expressions (38)
and (41)

The structure of the first term in the r.h.s. of expression
(38) is common to all expressions for the average number
of events in arbitrary branching processes. It is however
not trivial to derive it in the present context.

First, let us recall that the sought average 〈Rsp(τ,S)〉
is given by (34). To obtain the explicit value 〈Rsp(τ,S)〉,
we thus need to differentiate the GPF Θsp(z, τ,S) given by
(22) with respect to z. Using the normalization condition
Θ(z = 1, . . . ) ≡ 1 and the randomness of the parameter

, we obtain

〈Rsp(τ,S)〉 = 〈
〉 [Mout(τ,S) +M(τ,S) + Sτ ] , (156)

where

Mout(τ,S) =
∫ ∞

0

dt

∞∫∫

−∞
dx〈R(t, τ,S; x)〉 (157)

and

M(τ,S) =
∫ τ

0

dt

∞∫∫

−∞
dx〈R(t,S; x)〉 . (158)

Recall that

〈R(t, τ,S; x)〉 =
dΘ(z, t, τ,S; x)

dz

∣
∣
∣
∣
z=1

,

〈R(τ,S; x)〉 =
dΘ(z, τ,S; x)

dz

∣
∣
∣
∣
z=1

. (159)

Using these equalities and equations (24), (25) yields

〈R(t, τ,S; x)〉 =
nΦ(x, t) ⊗ 〈R(t, τ,S; x)〉 + nΦ(x, t+ τ) ⊗ 〈R(τ,S; x)〉

+ nΦ(x, t+ τ) ⊗ IS(x) . (160)

Analogously, from equations (27), (28), we obtain

〈R(τ,S; x)〉 =

nΦ(x, τ) ⊗ 〈R(τ,S; x)〉 + nΦ(x, τ) ⊗ IS(x) .
(161)

To obtain the equation for Mout(τ,S) defined in (157), let
us integrate equation (160) with respect to x and t. This
gives

Mout(τ,S) − nMout(τ,S) =

na(τ) ⊗ 〈R(τ,S)〉 + nS

∫ τ

0

dt a(t) , (162)

with the following notations:

∞∫∫

−∞
Φ(x, t)dx = Φ(t) , a(τ) =

∫ ∞

τ

Φ(t)dt,

b(τ) =
∫ τ

0

Φ(t)dt,

a(τ) + b(τ) = 1 . (163)

Analogously, we obtain from (161)

M(τ,S) − nΦ(τ) ⊗M(τ,S) = nS

∫ τ

0

b(t)dt . (164)

Note that the following identity is true

〈R(τ,S)〉 ⊗ a(τ) ≡M(τ,S) − 〈R(τ,S)〉 ⊗ b(τ) (165)

which is just a consequence of the identity a(τ)+b(τ) ≡ 1.
We also have

〈R(τ,S)〉 ⊗ b(τ) = M(τ,S) ⊗ Φ(τ) , (166)

and

〈R(τ,S)〉 ⊗ a(τ) ≡M(τ,S) −M(τ,S) ⊗ Φ(τ) . (167)

Using this identity and equation (164), we can rewrite
expression (162) in the form

Mout(τ,S) =
n

1 − n
Sτ −M(τ,S) , (168)

which is nothing but expression (38) written in a different
form. Substituting it into (156) yields

〈Rsp(τ,S)〉 =
〈
〉τ
1 − n

(169)

which is equivalent to (41).
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Appendix C: Derivation of expression (57)
starting from (56)

Let us first consider the last term in the r.h.s. of (56)

Φ̃(u)
1 − nφ̃(q)Φ̃(u)

. (170)

Let us rewrite it in the equivalent form

1
Φ̃−1(u) − nφ̃(q)

(171)

and substitute in this expression the asymptotic relation
(11). This gives

Φ̃(u)
1 − nφ̃(q)Φ̃(u)

	 1
Γ (1 − θ)(cu)θ + 1 − nφ̃(q)

. (172)

Using in (56) the expression (172), we obtain after some
simple algebraic transformations

ˆ〈R〉+(u,S; q) 	 〈R̃〉(S; q)
Γ (1 − θ)cθ uθ−1

Γ (1 − θ)(cu)θ + 1 − nφ̃(q)
,

(173)
where 〈R̃〉(S; q) is the Fourier transform of the average
〈R(S; x)〉 of the total number of aftershocks falling inside
the space domain S and triggered by an earthquake oc-
curring at position x.

This average 〈R(S; x)〉 is equal to

〈R(S; x)〉 =
dΘ(z,S; x)

dz

∣
∣
∣
∣
z=1

, (174)

where the GPF Θ(z,S; x) satisfies equation (30). Differ-
entiating equation (30) with respect to z and taking into
account that

dG(z)
dz

∣
∣
∣
∣
z=1

= n (175)

yields

〈R(S; x)〉 = −n dΨ(z,S; x)
dz

∣
∣
∣
∣
z=1

. (176)

Differentiating, in turn, expression (31) with respect to z
yields

dΨ(z,S; x)
dz

∣
∣
∣
∣
z=1

= −φ(x) ⊗ [〈R(S; x)〉 + IS(x)] . (177)

We have used here the normalizing condition Θ(z =
1,S; x) ≡ 1. Combining the two last relations gives

〈R(S; x)〉 − nφ(x) ⊗ 〈R(S; x)〉 = φ(x) ⊗ IS(x) . (178)

Applying the Fourier transform with respect to x to both
sides of (178) gives, after simple algebraic manipulations,

〈R̃〉(S; q) =
n φ̃(q)

1 − nφ̃(q)
ĨS(q) , (179)

where ĨS(q) is the Fourier transform of the indicator func-
tion of the space window S. In this paper, we assume that
S is the circular domain of radius � centered at the origin
of the plane x. Then

ĨS(q) = 2π
�

q
J1(�q) . (180)

To obtain (57), we use the theory of Mittag-Leffler func-
tions, in particular the expression of the Laplace transform
of the function Eθ(−τθ)

∫ ∞

0

e−uτEθ(−τθ)dτ =
uθ−1

1 + uθ
. (181)

Reciprocally, if the Laplace transform of a function is
equal to the r.h.s. of (181), then this function is neces-
sarily Eθ(−τθ). We briefly indicate how (181) is obtained.
In [20] (Vol. 3, Chap. 18, Sect. 1), the elegant formula (18)
reads ∫ ∞

0

e−tEα(tαz)dt =
1

1 − z
. (182)

Introducing the new integration variable τ such that t =
τu, we obtain

u

∫ ∞

0

e−uτEθ(ταzuα)dτ =
1

1 − z
. (183)

The next step is to choose z = −u−α which gives

u

∫ ∞

0

e−uτEθ(−τα)dτ =
1

1 + u−α
. (184)

It is easy to see that, after replacing α by θ and after
simple algebraic manipulations, we obtain (181).

Coming back to equation (173), it implies that
〈R+(τ,S; x)〉 is given by

〈R+(τ,S; x)〉 = 〈R(S; x)〉 ⊗ H(τ ; x) , (185)

where the Fourier transform of the function H(τ ; x) is
equal to

H̃(τ ; q) = Eθ

(

−1 − nφ̃(q)
1 − n

(
τ

c1

)θ
)

. (186)

Thus, the Fourier transform (with respect to x) of the
sought average given by (55) is given by expression (57).
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20. H. Bateman, A. Erdélyi, Higher Transcendental Functions,

Vol. 2 (Mac Graw-Hill, 1953)
21. A. Helmstetter, D. Sornette, Phys. Rev. E. 6606, 061104

(2002)
22. A. Helmstetter, G. Ouillon, D. Sornette, J. Geophys. Res.

108, 2483 (2003)
23. A. Saichev, A. Helmstetter, D. Sornette, Pure and Applied

Geophysics 162, 1113 (2005)
24. A. Saichev, D. Sornette, Phys. Rev. E 70, 046123 (2004)
25. A. Helmstetter, Phys. Rev. Lett. 91, 058501 (2003)
26. D. Sornette, M.J. Werner, J. Geophys. Res. 110, No. B8,

B08304, (2005)
27. A. Sornette, D. Sornette, Geophys. Res. Lett. 6, 1981

(1999)
28. A. Gorshkov, V. Kossobokov, A. Soloviev, in Nonlinear

dynamics of the lithosphere and earthquake prediction,
edited by V.I. Keilis-Borok and A.A. Soloviev (Springer,
Heidelberg) pp. 239–310

29. Y.Y. Kagan, Nonlinear Processes in Geophysics 1, 171
(1994)

30. V.M. Zolotarev, B.M. Strunin, Soviet Phys. Solid State 13,
481 (1971)

31. V.M. Zolotarev, One-dimensional Stable Distributions,
Amer. Math. Soc. Providence R.I. (1986)

32. D. Sornette, Chaos, Fractals, Self-organization and
Disorder: Concepts and Tools, 2nd edn. (Springer Series
in Synergetics, Heidelberg, 2004)

33. A. Helmstetter, D. Sornette, Geophys. Res. Lett. 30 (11)
(2003)

34. D. Vere-Jones, A class of self-similar random measures, in
press in Adv. Appl. Probab. (2005)

35. A. Saichev, D. Sornette, Phys. Rev. E 72, 056122 (2005)
36. D. Sornette, M.J. Werner, J. Geophys. Res. 110, No. B9,

B09303 (2005)
37. A. Saichev, D. Sornette, Renormalization of the

ETAS branching model of triggered seismicity
from total to observable seismicity, preprint at
http://arxiv.org/abs/physics/0507024

38. G. Ouillon, D. Sornette, J. Geophys. Res. 110, B04306
(2005) http://arXiv.org/abs/cond-mat/0407208

39. A. Sornette, D. Sornette, Europhys. Lett. 9, 197 (1989)
40. P. Bak, C. Tang, J. Geophys. Res. 94, 15635 (1989)
41. P. Alstrom, Phys. Rev. A 38, 4905 (1988)
42. P. Alstrom, Phys. Rev. A 41, 7049 (1990)
43. K.R. Felzer, T.W. Becker, R.E. Abercrombie, G.

Ekstroem, J.R. Rice, J. Geophys. Res. 107 (B9), 2190
(2002)

44. A. Helmstetter, Y.Y. Kagan, D.D. Jackson, J. Geophys.
Res. 110, B05S08 (2005)

45. R. Console, M. Murru, A.M. Lombardi, J. Geophys. Res.
108 (B10), 2468, (2002)

46. J. Zhuang, Y. Ogata, D. Vere-Jones, J. Geophys. Res. 109,
B05301 (2004)

47. Y.Y. Kagan, Bull. Seism. Soc. Am. 94 (4), 1207 (2004)
48. J.K. Gardner, L. Knopoff, Bull. Seismol. Soc. Amer. 64,

1363 (1974)
49. P. Reasenberg, J. Geophys. Res. 90, 5479 (1985)
50. S.D. Davis, C. Frohlich, J. Geophys. Res. 96 (B4),

63356350 (2001)
51. V.N. Gaisky, Statistical investigation of earthquake pro-

cesses (Moscow, Nauka, 1970)
52. S. Shlien, M.N. Toksoz, Bull. Seismol. Soc. Amer. 60,

No. 6, (1970)
53. Y.Y. Kagan, Statistical methods in the study of seismic

processes, in Proceedings of the 39th session, Bulletin of
the International Statistical Institute, Vienna, Vol. XLV,
Book 3, pp. 437–453 (1973)


